Home
World Journal of Advanced Research and Reviews
International Journal with High Impact Factor for fast publication of Research and Review articles

Main navigation

  • Home
  • Past Issues

Machine learning for chronic kidney disease progression modelling: Leveraging data science to optimize patient management

Breadcrumb

  • Home
  • Machine learning for chronic kidney disease progression modelling: Leveraging data science to optimize patient management

Foluke Ekundayo *

Department of IT and Computer Science, University of Maryland Global Campus, USA.

Research Article
 

World Journal of Advanced Research and Reviews, 2024, 24(03), 453–475
Article DOI: 10.30574/wjarr.2024.24.3.3730
DOI url: https://doi.org/10.30574/wjarr.2024.24.3.3730

Received on 28 October 2024; revised on 04 December 2024; accepted on 07 December 2024

Chronic Kidney Disease (CKD) is a progressive condition that affects millions globally, often leading to severe complications such as kidney failure and cardiovascular diseases. Early detection and personalized treatment plans are crucial for mitigating the progression of CKD and improving patient outcomes. Traditional methods of predicting CKD progression rely on clinical expertise and static risk assessment tools, which may not effectively leverage the wealth of patient data available today. Machine learning (ML) offers a data-driven approach to predict disease progression by analysing complex relationships within heterogeneous datasets, including laboratory results, demographic information, and comorbidities. ML models such as Random Forests, Gradient Boosting, and Support Vector Machines have demonstrated efficacy in predicting CKD progression. These algorithms excel in handling high-dimensional data and capturing nonlinear patterns, enabling accurate risk stratification and identification of key predictors. For example, ML models can analyse glomerular filtration rates (GFR), albumin levels, and other biomarkers to predict the likelihood of CKD progression or the onset of end-stage renal disease (ESRD). Additionally, these models facilitate personalized treatment recommendations by integrating patient-specific data, optimizing therapeutic interventions, and improving adherence to care protocols. However, challenges such as data quality, model interpretability, and ethical concerns regarding algorithmic bias must be addressed to ensure reliable and equitable deployment of ML solutions in clinical settings. This study explores the potential of ML in CKD progression modelling, highlighting case studies, model development, and validation techniques. It emphasizes the need for interdisciplinary collaboration to integrate ML-based tools into existing healthcare frameworks, ultimately enhancing CKD management and patient care.

CKD; Machine Learning; Disease Progression Modelling; Personalized Medicine; Random Forests; Gradient Boosting

https://wjarr.com/node/16632

Get Your e Certificate of Publication using below link

Download Certificate

Preview Article PDF

Foluke Ekundayo. Machine learning for chronic kidney disease progression modelling: Leveraging data science to optimize patient management. World Journal of Advanced Research and Reviews, 2024, 24(03), 453–475. Article DOI: https://doi.org/10.30574/wjarr.2024.24.3.3730

Copyright © 2024 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0

Footer menu

  • Contact

Copyright © 2026 World Journal of Advanced Research and Reviews - All rights reserved

Developed & Designed by VS Infosolution