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Abstract 

The present study aimed to investigate the antidiabetic and anti-inflammatory effects of Trifolium alexandrinum (TA) 
and Trifolium Pretense (TP) against streptozotocin induced diabetic impairment in male rats. Forty adult Wistar albino 
male rats were divided into four groups: Group 1, Control; Group 2, streptozotocin (STZ); Group 3, STZ + TA –treated 
group and Group 4, STZ + TP–treated group. TA and TP showed a significant reduction in the blood glucose, glycosylated 
hemoglobin (Hb A1C) levels and elevation in insulin and C-peptide. They restored the glycogen content of liver and 
skeletal muscle, also showed improvements in the activities of α-amylase, carbohydrate metabolic enzymes, lipase and 
lipid profile. Treatment with TA and TP extracts resulted in an improvement of the oxidative parameters and 
enhancement in the antioxidant enzymes in the pancreas and liver. While, pancreatic TNF-α, IL-1β, IL-6, NO, iNos and 
caspase-3 levels were significantly reduced with the treatment of TA and TP extracts. Administration of TA and TP 
extracts to diabetic rats revealed elevation in the GLUT4 levels of the skeletal muscle and pancreas. They caused up 
regulation in pancreatic GLUT2 gene expression. TA and TP extracts showed signs of regeneration of β-cells and 
improvement in the pancreatic tissue. It could be concluded that TA and TP extracts possess antioxidant and 
hypoglycemic potential resulting in reduction of the elevated oxidative stress and pro-inflammatory cytokines.  

Keywords:  Trifolium alexandrinum; Trifolium pratense; Diabetes; Carbohydrate metabolic enzymes; Pro-
inflammatory cytokines 

1. Introduction

Diabetes mellitus (DM) is a chronic metabolic disease that is related to a variety of genetic and environmental factors 
[1]. DM is a heterogeneous metabolic disorder resulting from defective insulin secretion, resistance to insulin action or 
both leading to prolonged hyperglycemia with disarrangement carbohydrate, lipid and protein metabolism [2]. 

Diabetes mellitus type 2 (T2DM; non-insulin-dependent diabetes or adult-onset diabetes), is an endocrine disorder 
characterized by high blood sugar causing insulin resistance (IR) and relative insulin deficiency [3].  

Hyperglycemia is responsible for the formation of free radicals, autooxidation of glucose and lipid peroxidation as well 
as disturbance of the antioxidant defense system [2]. According to the ADA, the chronic hyperglycemia is associated 
with long-term damage, dysfunction and failure of different organs, especially the eyes, kidneys, nerves, heart and blood 
vessels [4].  

In spite of the availability of various antidiabetic agents and its secondary complications continue to become a major 
problem in the world population, medicinal plants and their bioactive compound are used as an alternative method to 
treat the diabetic patient throughout the world and popular as nutraceutical [5]. 
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The health properties of Trifolium sp., Shows antiseptic, analgesic, antioxidant and anti-inflammatory properties [6]. 
The biological activity of Trifolium sp., due to the presence of interesting natural bioactive compounds, such as flavonoid 
glycosides, clovamides and polyphenols [7].  

TA and TP possess great amounts of phytoestrogens [8]. These plants are used to treat and relieve symptoms in 
postmenopausal women [9]. Estrogen regulates several metabolic processes, including glucose and lipid metabolism, 
body weight, adipose tissue distribution, caloric intake and energy expenditure in both men and women [10]. 

The present study was carried out to investigate the efficiency of the two Fabaceae extracts; TA and TP in reducing the 
hyperglycemia, diabetic impairment and oxidative stress in the STZ induced diabetic rats and to assess their therapeutic 
potential for treatment of diabetes mellitus.  

2. Material and methods 

2.1. Chemicals 

Streptozotocin (STZ) (2-Deoxy-2-(3-methyl-3-nitrosourea) -1-D-glucopyranose) is a synthetic nitrosoureido 
glucopyranose, pale yellow, sterilized powder. It was purchased from Sigma-Aldrich Chemical Co 
(www.sigmaldrich.com) St. Louis, MO, USA. 

Trifolium pratense (TP) Linn. (Family: Fabaceae) (common name Red clover) was purchased from Nature’s Way, Inc. 
Springville, Utah 84663 (USA) and then the powdered material in the capsules were soaked in methanol then filtered 
and lyophilized.  

Kits were purchased from Biodiagnostic and research reagents Co. (Cairo, Egypt). All reagents and chemicals used were 
of analytical grade, other chemicals were of the highest purity commercially available. 

2.2. Preparation of methanolic extracts of Trifolium alexandrinum 

Aerial parts (leaves, stem and flowers) of the plant, Trifolium alexandrinum (TA) Linn. (Family: Fabaceae) (common 
name: Egyptian clover, Berseem clover) were collected during the vegetative and flowering growth stage from different 
localities of Alexandria, Egypt by Safaa Abd Elsalam Mohamed, lecturer of plant taxonomy and palynology, Biological 
and Geological Sciences Department, Faculty of Education, Alexandria University. The plant was collected from fields in 
the morning and immediately taken to the laboratory and it was taxonomically identified, according to its morphological 
characters [11]. The plant extract was done according to Khan et al [12]. The aerial parts of it were collected, washed 
with tap water, then with distilled water, dried under shade. The chopped plant was grinded into fine powder using an 
electric grinder to obtain a fine powder. The powdered material was soaked in 80% methanol for a period of 1 week at 
room temperature and then filtered using a Buchner funnel and Whatman No.1 filter paper. The filtrate was lyophilized 
for dryness using a Freeze-dry system/Lyph lock 4.5 (Labconco) at the Environmental Sciences Department, Faculty of 
Science, Alexandria University. After lyophilization, the resulting the dried extracts of TA plant. The TA crude extracts 
were kept in a sterile labeled container and refrigerated at 4 °C for further assessment.  

2.3. Induction of diabetes 

Thirty adult Wistar albino male rats were injected intraperitoneally (i.p) by a single dose of streptozotocin (STZ) at a 
dose level of 40 mg/kg b.w. that freshly dissolved in cold sodium citrate buffer (0.1 M/L; pH 4.5) [13]. Three days after 
the STZ injection, the blood was withdrawn from the tail vein and the glucose level was determined. Rats were diabetic 
when their fasting blood glucose levels were more than 200mg/dL. 

2.4. Experimental animals and groups 

In the present study, forty adult male albino rats weighing 180–200 g, 11–12 weeks old were used. Rats were obtained 
from the animal Care Unit, Department of Home Economics, Faculty of Agriculture, Alexandria University, Egypt. Rats 
were housed in stainless steel wire cages placed in a well-ventilated animal house kept on basal diet and tap water ad 
libitum and maintained under constant laboratory conditions of (temperature: 22±3 °C, photoperiod: 12/12-h 
light/dark cycle). The local committee approved the design of the experiments and protocols were carried out according 
to the guidelines of the National Institutes of Health (NIH). 

After induction of diabetes, the diabetic rats were randomly allocated to 3 groups (10 rats each): 1. (Diabetic group); 
STZ-treated group; 2.  (Diabetic+TA); Diabetic+Trifolium alexandrinum -treated group): diabetic rats treated orally by 
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gavage with TA methanolic at a dose of 200 mg/kg B.W. [12] once a day for 15 consecutive days; 3. (Diabetic+TP); 
Diabetic+ Trifolium pratense -treated group): diabetic rats treated orally by gavage with TP methanolic extract at a dose 
of 250 mg/kg B.W. [14] once a day for 15 consecutive days. Ten rats received distilled water and were used as a control 
group. 

2.5. Blood and tissue sampling 

2.5.1. Blood collection 

At the end of the experiment, rats were fasted overnight and blood samples were collected from anesthetized rats of all 
groups by cardiac puncture using a sterile syringe for determination of biochemical analysis. Part of the blood samples 
were put immediately into silicon disposable glass tubes with ethylene diamine tetra-acetic acid (EDTA) (El-Gomhorya 
Co., Egypt) as an anticoagulant and placed immediately on ice for the determination of glycosylated hemoglobin (Hb 
A1c) concentration. The other part of collected blood sample from all experimental groups was allowed to coagulate in 
a sterilized centrifuge tube in frozen ice for a few min. and centrifuged at 3000 r.p.m. for 10 min. to separate blood 
serum. Then the obtained serum, kept at -20 °C until analyses of the required parameters. 

2.5.2. Preparation of pancreas, liver and skeletal muscle tissue homogenates 

The pancreas, liver and skeletal muscles were dissected and isolated from all experimental groups. These organs were 
cleaned from the blood and adhering matter and washed by chilled cold saline solution (0.9% NaCl), parts of isolated 
tissues were immediately dried, immersed in RNA Later and kept at -80 °C until molecular analysis. Then, 0.5 g of 
pancreas, liver and muscles were minced and homogenized separately in 2 ml cold buffer (50 mM potassium phosphate, 
pH 7.5, 1 mM EDTA/g tissue) using tissue homogenizer (Potter-Elvehjem type Homogenizer) for 5 min. The 
Homogenates were then centrifuged at 4000 rpm for 15 min. (Hettich zentrifugen, Universal 32 R, Germany) at 4 °C. 
The supernatants were stored at -80 °C for determination of biochemical parameters. Other Parts of pancreas from each 
experimental group were sliced and immediately fixed in 10% formalin for histological examination. 

2.6. Biochemical parameters 

The serum glucose level was measured using a spectrophotometric assay kit.  

C-peptide serum levels were determined by the Mercodia C-peptide ELISA, Mercodia AB, Uppsala, Sweden, according 
to the manufacturer’s protocol. Liver and muscle glycogen levels were assessed by the Glycogen Assay kit. Whole blood 
was used in the analysis of HbA1c with the aid turbidimetric immunoassay kit. 

Serum α-amylase activity (EC: 3.2.1.1) Assay kit (Colorimetric) (ab102523) detects activity of α- amylase through a two-
step reaction. 

Hepatic hexokinase (HK; EC: 2.7.1.1) Assay kit (Colorimetric) (ab136957), the assay is simple, sensitive and rapid and 
can detect HK activity even less than 0.1 mU/well. 

Hepatic glucokinase activity (GK; EC: 2.7.1.12) was determined using the method of Davidson and Arion [15]. 

Hepatic glucose-6-phosphate dehydrogenase (G6Pd; EC: 1.1.1.49) activity was performed at 37°C in the 
spectrophotometer in accordance with the Beutler [16] method. This method is based on the fact that NADPH, which is 
formed as a result of reducing NADP+, yields absorbance at 340 nm. 

Hepatic glucose‐6‐phosphatase (G6P; EC: 3.1.3.9) activity was measured using the method of Alegre et al [17]. 

Serum aspartate aminotransferase (AST; EC: 2.6.1.1) and alanine transaminase (ALT; EC: 2.6.1.2) activities were 
assayed spectrophotometrically according to Reitman and Frankel [18]. 

Serum alkaline phosphatase (ALP; EC: 3.1.3.1) activity was measured colorimetrically according to Belfield and 
Goldberg [19]. 

Serum lactate dehydrogenase (LDH; EC: 1.1.1.27) activity was measured according to the technique described by 
Vassault et al [20]. 
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The serum total cholesterol (TC) level was determined using a commercial kit (Sigma, USA. The HDL-cholesterol 
concentration was measured according to the method descriptive by Lopes-Virella et al [21]. The serum triglyceride 
(TG) concentration was measured enzymatically using a kit from Sigma Chemical Co. LDL- cholesterol and VLDL- 
cholesterol were determined according to Friedewald et al [22]. 

Serum lipase activity (EC: 3.1.1.3) was measured using the method of Tietz and Shuey [23]. 

The concentration of malondialdehyde (MDA), a product of lipid peroxidation was measured as an indicator of oxidative 
stress in pancreas and liver tissues according to the method described by Varshney and Kale [24]. Reduced glutathione 
(GSH) was measured spectrophotometrically at 412 nm according to the method described by Jollow et al [25]. 
Superoxide dismutase (SOD; EC: 1.15.1.1), catalase (CAT; EC: 1.11.1.6) and glutathione peroxidase (GPx; EC: 1.11.1.9) 
activities were determined in the pancreas and liver tissues by the method of Nishikim et al [26], Abei [27] and Rotruck 
et al [28], respectively. The nitric oxide (NO) level in the pancreas and liver tissues was determined by the method of 
Montgomery and Dymock [29]. Advanced glycated end products (AGEs) concentration was measured using Cell Biolabs’ 
OxiSelect™ AGE Competitive ELISA Kit. Antioxidant capacity determination is assayed by the method of Koracevic et al 
[30]. 

Tumor Necrosis factor alpha (TNF-α), Interleukin-1β (IL-1β), Interleukin-6 (IL-6), INOS and pancreatic caspase-3 
concentration were estimated using ELISA kits, according to the manufacturer’s protocol. Glucose transporter 4 
(GLUT4) concentrations in the muscle and pancreas tissues was measured using a sandwich enzyme immunoassay kit. 

2.7. Molecular study 

2.7.1. Isolation of total RNA from pancreas tissue 

Total RNA was isolated from pancreas using RNA-spinTM Total RNA extraction Kit (iNtRON Biovision, Egypt Co.) 
according to the manufacturer’s instructions. 

2.7.2. Quantitative reverse transcriptase (qRT) QRT-PCR 

Glucose transporter-2 (GLUT2) gene expression was analyzed by quantitative reverse transcription-PCR (RT-PCR; 
illumina) using a real-time SYBR Green gene expression assay kit (QIAGEN). cDNA was directly prepared from isolated 
RNA using cDNA Synthesis kit; and mRNA levels of GLUT2 as well as the reference gene, B-ACTIN, were analyzed using 
gene-specific SYBR Green-based QuantiTect® Primer assays (QIAGEN, Germany). qPCR was performed in a reaction 
volume of 25 μL according to the manufacturer’s instructions. Briefly, 12.5 μL of master mix, 2.5 μL of assay primers 
(10×) and 10 μL of template cDNA (100 ng) were added to each well. After a brief centrifugation, PCR plate was 
subjected to 35 cycles under the conditions in Table (1).   

Table 1 Real-time PCR thermal cycling conditions and the sequence of the primer 

Real-time PCR thermal cycling conditions 

Stage Temperature Time Number of cycles 

Initial denaturation 95 10-15 min 

35-55 
Denaturation 95 10 sec 

Annealing 55 15 sec 

Extension 72 15-30 sec 

The sequence of the primer 

Gene 

 

GLUT-2 

designed from rat glucose transporter 
type 2 

B-ACTIN 

Forward 
primer 

TGGGTTCCTTCCAGTTCG AGGCCGGCTTCGCGGGCGA 

Reverse primer AGGCGTCTGGTGTCGTATG TGCTCCTCAGGGGCCACACG 

According to Matsuoka et al [32] 
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All samples and controls were run in triplicate. The quantitative RT-PCR data were analyzed using a comparative 
threshold (Ct) method and the fold inductions of samples were compared with the untreated samples. B-ACTIN was 
used as an internal reference gene to normalize the expression of specific genes. The gene expression level was then 
calculated as previously described by Yuan et al [31].  

2.8. Histological examination 

Pancreatic tissues were collected after animal sacrifice for the histopathological examination purposes. All tissue 
samples were fixed in 10 % formalin solution, and then treated with conventional grade of alcohol and xylene. Then cut 
into 5 μm-thick sections using a microtome (Leica RM2255, Germany) and stained with hematoxylin and eosin (H and 
E) stains, for microscopic investigation. The slides were examined and photographed with an Olympus UTU1X- 2 camera 
connected to an Olympus CX41 microscope (Tokyo, Japan).  

2.9. Statistical methods 

The present data subjected to statistical analysis. Statistical analysis was done using Statistical Package for Social 
Sciences (SPSS) computer program, version 20.00 produced by IBM Software, Inc. Chicago, USA. The data were analyzed 
by one-way analysis of variance (ANOVA) and the group means were compared with Tukey’s post hoc test [33]. All data 
were presented as means ± standard error (SE). Differences were considered significant at P≤0.05. 

3. Results  

3.1. Effect of Trifolium alexandrinum (TA) and Trifolium pratense (TP) extracts on the levels of serum glucose, 
insulin, C-peptide, glycogen in liver and muscle and blood glycosylated hemoglobin (Hb A1c) of diabetic male 
rats 

As shown in Table 2 levels of serum glucose and blood Hb A1c of untreated diabetic group were significantly (p≤0.05) 
increased as compared to control group. In contrast, there were significant (p≤0.05) decrease in the levels of serum 
insulin, C-peptide and glycogen in the liver and muscle as compared to control group.  

On the other hand, administration of TA and TP extracts to diabetic rats caused significant (p≤0.05) reduction in glucose 
and Hb A1c levels and significant (p≤0.05) increases in the levels of insulin, C-peptide and glycogen in the liver and 
muscle when compared to the untreated diabetic group. 

Table 2 Effect of Trifolium alexandrinum (TA) and Trifolium pratense (TP) extracts on the levels of serum glucose, 
insulin, C-peptide, glycogen in liver and muscle and blood glycosylated hemoglobin (Hb A1c) of diabetic male rats  

Parameters Control Diabetic Diabetic+TA Diabetic+TP 

Glucose (mg/dl) 126.86±5.20 311.42±15.95 a 138.29±9.76 b 137.43±11.35 b 

Insulin ) µU/L) 10.86±0.79 2.41±0.47 a 8.08±0.60 b 8.10±0.55 b 

C-peptide ) ng/ml) 8.43±0.18 5.01±0.29 a 7.60±0.29 b 7.56±0.26 b 

Liver glycogen (mg/g tissue) 5.69±0.21 2.89±0.23 a 5.19±0.27 b 5.13±0.26 b 

Muscle glycogen (mg/g tissue) 57.24±2.76 27.10±1.54 a 55.06±3.38 b 52.24±2.60 b 

Hb A1c ) % ) 5.14±0.15 13.59±0.51 a 6.06±0.40 b 5.59±0.37 b 

Values represented as means±SE. 
Means in the same row with no superscript letter are not significantly different (p ≥ 0.05). 
a: The mean values are significantly different in comparison with control group (P ≤ 0.05). 
b: The mean values are significantly different in comparison with diabetic group (P ≤ 0.05). 

3.2. Effect of Trifolium alexandrinum (TA) and Trifolium pratense (TP) extracts on the activities of serum α-
amylase and hepatic carbohydrate metabolizing enzymes of diabetic male rats 

Table 3 showed that serum α-amylase activity of untreated diabetic group were significantly (p≤0.05) increased while 
the activities of hepatic hexokinase (HK), glukokinase (GK) and glucose-6-phosphate dehydrogenase (G6Pd) were 
significantly (p≤0.05) decreased as compared to control group. Also, untreated diabetic rats exhibited significant 
(p≤0.05) increase in hepatic glucose-6-phosphatase (G6P) activity when compared to control group. 
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On contrast, TA and TP extracts treatment caused significant (p≤0.05) decrement in the activity of serum α-amylase and 
significant (p≤0.05) increment in the activity of hepatic HK, GK and G6Pd as compared to untreated diabetic rats. In 
addition, a significant (p≤0.05) decrement in the activity of hepatic G6P in TA and TP -treated groups was observed as 
compared to untreated diabetic rats. 

Table 3 Effect of Trifolium alexandrinum (TA) and Trifolium pratense (TP) extracts on the activities of serum α-amylase 
and hepatic carbohydrate metabolizing enzymes of diabetic male rats 

Parameters Control Diabetic Diabetic+TA Diabetic+TP 

α-amylase )mU/ml) 101.29±5.39 165.11±3.56 a 91.33±5.05 b 86.40±4.30 b 

HK )nM/mg tissue) 342.00±8.85 276.71±10.80 a 314.10±3.63 b 320.29±10.05 b 

GK )µM/mg tissue) 6.49±0.43 3.54±0.42 a 5.21±0.14 b 5.90±0.29 b 

G6Pd (mU/mg tissue) 86.00±3.08 43.50±2.14 a 76.93±3.44 b 75.79±4.78 b 

G6P )U/mg tissue) 13.36±0.33 22.54±0.50 a 12.74±0.23 b 13.73±0.33 b 

Values represented as means±SE. 
Means in the same row with no superscript letter are not significantly different (p ≥ 0.05). 
a: The mean values are significantly different in comparison with control group (P ≤ 0.05). 
b: The mean values are significantly different in comparison with diabetic group (P ≤ 0.05). 

3.3. Effect of Trifolium alexandrinum (TA) and Trifolium pratense (TP) extracts on the activities of serum liver 
function enzymes of diabetic male rats 

The activities of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) 
and lactate dehydrogenase (LDH) were significantly (p≤0.05) elevated in untreated diabetic rats when compared to 
control group (Table 4).  

Furthermore, administration of TA and TP extracts caused significant (p≤0.05) decrease in the activities of these 
enzymes as compared to the untreated diabetic group. 

Table 4 Effect of Trifolium alexandrinum (TA) and Trifolium pratense (TP) extracts on the activities of serum liver 
function enzymes of diabetic male rats 

Parameters Control Diabetic Diabetic+TA Diabetic+TP 

AST (U/L) 176.14±14.30 248.57±16.20 a 195.71±6.76 b 186.43±11.68 b 

ALT (U/L) 40.57±1.94 55.71±4.00 a 40.00±4.14 b 37.14±5.18 b 

ALP (U/L) 241.29±18.34 655.86±106.14 a 357.14±40.00 b 248.86±9.95 b 

LDH (U/L) 415.51±28.03 777.00±43.01 a 453.30±32.39 b 445.31±31.27 b 
Values represented as means±SE. 

Means in the same row with no superscript letter are not significantly different (p ≥ 0.05). 
a: The mean values are significantly different in comparison with control group (P ≤ 0.05). 
b: The mean values are significantly different in comparison with diabetic group (P ≤ 0.05). 

3.4. Effect of Trifolium alexandrinum (TA) and Trifolium pratense (TP) extracts on serum lipid profile and 
lipase activity of diabetic male rats 

The results of the present study showed that untreated diabetic group displayed a significant (p≤0.05) increase in the 
concentration of serum TC, TG, LDL-C and VLDL-C while, the serum HDL-C concentration was significantly (p≤0.05) 
decreased compared with control group. In addition, the activity of serum lipase of untreated diabetic group was 
significantly (p≤0.05) decreased compared with control group (Table 5). 

However, administration of TA and TP extracts to diabetic groups showed significant (p≤0.05) decreases in the 
concentration of serum TC, TG, LDL-C and VLDL-C and significant (p≤0.05) increase in the serum HDL-C concentration 
as compared with the untreated diabetic group. Moreover, the activity of serum lipase showed significant (p≤0.05) 
increase after treatment with TA and TP extracts compared with the untreated diabetic group. 
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Table 5 Effect of Trifolium alexandrinum (TA) and Trifolium pratense (TP) extracts on serum lipid profile and lipase 
activity of diabetic male rats 

Parameters Control Diabetic Diabetic+TA Diabetic+TP 

TC (mg/dl) 91.86±4.78 116.71±4.20 a 99.14±3.62 b 92.00±3.00 b 

TG (mg/dl) 99.29±3.41 180.86±12.09 a 87.50±8.45 b 92.00±5.31 b 

LDL-C (mg/dl) 23.14±6.92 49.21±5.00 a 32.06±4.86 b 24.81±3.90 b 

VLDL-C (mg/dl) 19.86±0.68 36.17±4.02 a 17.51±1.69 b 18.40±1.06 b 

HDL-C (mg/dl)  48.86±3.66 31.29±0.47 a 49.57±3.87 b 48.86±2.47 b 

Lipase (U/L) 29.67±2.24 65.01±5.30 a 26.86±1.84 b 24.39±1.60 b 

Values represented as means±SE. 
Means in the same row with no superscript letter are not significantly different (p ≥ 0.05). 
a: The mean values are significantly different in comparison with control group (P ≤ 0.05). 
b: The mean values are significantly different in comparison with diabetic group (P ≤ 0.05). 

3.5. Effect of Trifolium alexandrinum (TA) and Trifolium pratense (TP) extracts on oxidative stress markers 
and glycated end products (AGEs) in the pancreas and liver of diabetic male rats 

The obtained results showed significant (p≤0.05) increase in the pancreatic and hepatic levels of oxidative stress 
markers; malondialdehyde (MDA), nitric oxide (NO) and glycated end products (AGEs) concentration in the untreated 
diabetic group in comparison with the control group (Table 6). While, the concentration of reduced glutathione (GSH) 
in both pancreas and liver tissues in the untreated diabetic group was significantly (p≤0.05) reduced when compared 
to control group. 

On the other hand, oral administration of either TA and TP extracts resulted in significant (p≤0.05) reduction in the 
elevation of MDA, NO and AGEs levels and significant (p≤0.05) enhancement in GSH concentration in both pancreas and 
liver when compared to the untreated diabetic group. 

Table 6 Effect of Trifolium alexandrinum (TA) and Trifolium pratense (TP) extracts on oxidative stress markers and 
glycated end products (AGEs) in the pancreas and liver of diabetic male rats 

Parameters Control Diabetic Diabetic+TA Diabetic+TP 

Pancreas     

MDA )nM/g tissue) 13.77±1.11 34.86±2.97 a 20.17±1.27 b 18.19±1.42 b 

NO )µM/g tissue) 1.77±0.17 4.44±0.44 a 1.86±0.13 b 2.13±0.26 b 

AGEs )µg/g protein) 13.04±0.37 19.30±0.53 a 13.79±0.47 b 13.76±0.47 b 

GSH )mg/g tissue) 2.76±0.21 1.69±0.10 a 2.31±0.15 b 2.50±0.10 b 

Liver     

MDA )nM/g tissue) 15.91±1.02 36.28±2.66 a 17.74±0.94 b 22.03±0.63 b 

NO )µM/g tissue) 1.94±0.11 4.73±0.13 a 1.99±0.09 b 2.27±0.16 b 

AGEs ) µg/g protein) 13.14±0.27 20.30±0.43 a 14.07±0.37 b 13.09±0.38 b 

GSH )mg/g tissue) 14.56±0.08 7.73±0.08 a 13.06±0.14 b 13.71±0.11 b 

Values represented as means±SE. 
Means in the same row with no superscript letter are not significantly different (p ≥ 0.05). 
a: The mean values are significantly different in comparison with control group (P ≤ 0.05). 
b: The mean values are significantly different in comparison with diabetic group (P ≤ 0.05). 
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3.6. Effect of Trifolium alexandrinum (TA) and Trifolium pratense (TP) extracts on the antioxidant activities 
and total antioxidant capacity (TAC) in the pancreas and liver of diabetic male rats 

Results of the present study revealed that, diabetes induction resulted in significant (p≤0.05) depletion of antioxidant 
enzyme activities (superoxide dismutase; SOD, catalase; CAT and glutathione peroxidase; GPX) and TAC in both 
pancreas and liver as compared to the control values (Table 7).  

On the other hand, treatment with TA and TP extracts showed enhancement in the antioxidative status as demonstrated 
by significant (p≤0. 05) increase in the activities of the pancreatic and hepatic SOD, CAT, GPX and TAC level when 
compared to the untreated diabetic group. 

Table 7 Effect of Trifolium alexandrinum (TA) and Trifolium pratense (TP) extracts on the antioxidant enzyme activities 
and total antioxidant capacity (TAC) in the pancreas and liver of diabetic male rats 

Parameters Control Diabetic Diabetic+TA Diabetic+TP 

Pancreas     

SOD )U/mg protein) 2.90±0.21 1.46±0.22 a 2.84±0.15 b 2.90±0.11 b 

CAT) U/mg protein) 4.20±0.12 3.16±0.22 a 3.90±0.23 b 4.00±0.06 b 

GPX )U/mg protein) 22.67±0.52 8.54±0.49 a 18.60±1.05 b 22.50±0.25 b 

TAC (mM/g tissue) 14.27±0.56 8.44±0.44 a 13.0±0.39 b 14.14±0.61 b 

Liver     

SOD )U/mg protein) 3.27±0.16 1.34±0.17 a 3.10±0.15 b 3.24±0.09 b 

CAT )U/mg protein) 4.29±0.11 3.03±0.17 a 4.06±0.37 b 4.16±0.07 b 

GPX )U/mg protein) 22.52±0.47 8.83±0.45 a 19.17±0.59 b 21.78±0.35 b 

TAC (mM/g tissue) 14.56±0.32 7.73±0.43 a 13.06±0.34 b 13.71±0.43 b 

Values represented as means±SE. 
Means in the same row with no superscript letter are not significantly different (p ≥ 0.05). 
a: The mean values are significantly different in comparison with control group (P ≤ 0.05). 
b: The mean values are significantly different in comparison with diabetic group (P ≤ 0.05). 

3.7. Effect of Trifolium alexandrinum (TA) and Trifolium pratense (TP) extracts on the concentrations of tumor 
necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), inducible nitric oxide synthase 
(iNOS) and caspase-3 in the pancreas of diabetic male rats 

The pancreatic concentrations of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), 
inducible nitric oxide synthase (iNOS) and caspase-3 in untreated diabetic group were significantly (P≤0.05) higher than 
those of the control group (Table 8).  

Administration of TA and TP extracts significantly (P≤0.05) decreased the pancreatic TNF-α, IL-1β, IL-6, iNOS and 
caspase-3 concentrations in comparison to untreated diabetic group.  

Table 8 Effect of Trifolium alexandrinum (TA) and Trifolium pratense (TP) extracts on the concentrations of tumor 
necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS) and 
caspase-3 in the pancreas of diabetic male rats 

Parameters Control Diabetic Diabetic+TA Diabetic+TP 

TNF-α )pg/g tissue) 87.14±4.15 135.86±5.39 a 111.57±4.16 b 90.14±3.76 b 

IL-1β )pg/g tissue) 73.57±1.17 109.71±1.92 a 93.29±1.44 b 88.00±1.98 b 

IL-6 )pg/g tissue) 163.57±2.46 446.86±18.12 a 252.43±22.21 b 172.71±5.07 b 

iNOS )ng/g tissue) 10.09±0.26 18.16±0.48 a 12.57±0.77 b 11.06±0.40 b 

Caspase -3 )ng/g tissue) 212.71±1.44 243.14±7.63 a 221.14±6.37 b 222.86±3.07b 

Values represented as means±SE. 
Means in the same row with no superscript letter are not significantly different (p ≥ 0.05). 
a: The mean values are significantly different in comparison with control group (P ≤ 0.05). 

 b: The mean values are significantly different in comparison with diabetic group (P ≤ 0.05). 
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3.8. Effect of Trifolium alexandrinum (TA) and Trifolium pratense (TP) extracts on the glucose transporter 4 
(GLUT4) concentrations in the muscle and pancreas of diabetic male rats 

The concentration of glucose transporter 4 (GLUT4) in the muscle and pancreas of untreated diabetic rats was 
significantly (p≤0.05) decreased as compared to control group (Table 9).  

On contrast, administration of TA and TP extracts diabetic groups caused significant (p≤0.05) increase in concentration 
of GLUT4 in the muscle and pancreas as compared to the untreated diabetic group.  

Table 9 Effect of Trifolium alexandrinum (TA) and Trifolium pratense (TP) extracts on the glucose transporter 4 (GLUT4) 
concentrations in the muscle and pancreas of diabetic male rats 

Parameters Control Diabetic Diabetic+TA Diabetic+TP 

Muscle 

GLUT4 (ng/g tissue) 
205.43±2.11 147.86±2.99 a 194.43± 5.02b 194.71±1.27b 

Pancreas 

GLUT4 (ng/g tissue) 
105.43±2.11 73.57±1.17 a 90.14±3.77 b 93.29±1.44 b 

Values represented as means±SE. 
Means in the same row with no superscript letter are not significantly different (p ≥ 0.05). 
a: The mean values are significantly different in comparison with control group (P ≤ 0.05). 
b: The mean values are significantly different in comparison with diabetic group (P ≤ 0.05). 

 

3.9. Effect of Trifolium alexandrinum (TA) and Trifolium pratense (TP) extracts on the glucose transporter 2 
(GLUT2) gene expressions in the pancreas of diabetic male rats 

Pancreatic glucose transporter 2 (GLUT2) gene expressions of untreated diabetic rats was significantly (p≤0.05) 
downregulated as compared to control group (Table 10).  

On contrast, diabetic rats treated with TA and TP extracts exhibited significant (p≤0.05) upregulation in GLUT2 gene 
expression in the pancreas when compared to the untreated diabetic rats.  

Table 10 Effect of Trifolium alexandrinum (TA) and Trifolium pratense (TP) extracts on the glucose transporter 2 
(GLUT2) gene expressions in the pancreas of diabetic male rats (Fold change calculated in reference to control) 

Parameter Control Diabetic Diabetic+TA Diabetic+TP 

GLUT2 1.367±0.088 0.447±0.038 a 0.997±0.064 b 1.143±0.091 b 

Values represented as means±SE. 
Means in the same row with no superscript letter are not significantly different (p ≥ 0.05). 
a: The mean values are significantly different in comparison with control group (P ≤ 0.05). 
b: The mean values are significantly different in comparison with diabetic group (P ≤ 0.05). 

3.10. Histological examination in the pancreas tissue of male rats 

Control rats (Figures A1 and A2) revealed normal pancreatic architecture; large and regular well-defined islets of 
Langerhans which represented the endocrine portion of pancreatic lobules. They appeared as pale staining areas 
surrounded by thin capsule of connective tissue scattered in between the exocrine acini. The acini arranged in 
anastomosing branching cords with blood capillaries in between and consist of clusters of pyramidal shaped cells with 
pale -stained cytoplasm and central rounded nuclei. 

While,  the untreated diabetic rats (Figures B1and B2), showed disrupted architecture in the structure of the islets of 
Langerhans. They appeared distorted with degeneration of its cells and disturbance in cellular cord arrangement. Many 
islets cells revealed marked cytoplasmic vacuolation and pyknotic nuclei. Also, disturbance of the acinar pattern 
structure with area of pyknotic nuclei of some acinar cells and vacuolated acini. Presence of inflammatory cell 
infiltration,  congestion, dilatation and thickening of the blood vessels.  

https://08101rysy-1106-y-https-www-sciencedirect-com.mplbci.ekb.eg/topics/medicine-and-dentistry/vacuolization
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On the other hand, the histological changes of diabetic pancreas treated with TA and TP extracts were markedly reduced 
(Figures C1 and C2). These groups revealed moderate improvement in pancreatic cells and preserved the general 
architecture compared to the   untreated diabetic group. 

 

Figure 1 Photomicrographs of pancreatic sections of male rats; (A1 & A2):control group showing normal pancreatic 
architecture; the closely packed pancreatic acini (a) pyramidal shaped cells with rounded nuclei (N), the pale-stained 
normal islets of Langerhans (IS) scattered in between acini with well-preserved cytoplasm (arrow) and nucleus (N*). 
untreated diabetic group (B1& B2) showing disturbance of the acinar pattern structure (a), pyknotic nuclei of acinar 
cells (N) with severe damage, dilation, thickening (black cicle) and congestion (green arrow) of the blood vessels (Bv). 
Islets of Langerhans (IS) with irregular outline, degeneration of its cells (green circle), vacuolated cytoplasm (V), many 
cells show pyknotic nuclei (black arrow). Presence of inflammatory cell infiltration (black square). TA & TP –treated 
diabetic groups (C1 & C2, respectively) showing moderate improvement in pancreatic architecture. H&E, X400. 

4. Discussion 

Diabetes mellitus (DM) is one of the most commonly encountered metabolic diseases which endanger the life of millions 
of populations all over the world [3]. Therefore, there is an urgent need to continue working on the prevention and 
treatment of diabetes. New natural compounds are still continually being studied to develop novel therapies to better 
prevent or treat diabetes[34]. 
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In the present study, streptozotocin (STZ) -induced diabetic rats showed elevation in glucose levels accompanied by 
reduction in insulin and C-peptide levels. The STZ mechanism includes partially selective destruction of pancreatic β-
cells, which make cells less active and leading to poor sensitivity of insulin for glucose uptake by tissues that causes 
hyperglycemia [35]. This may be due to STZ result in accumulation of ROS and RNS inhibits the electron transport chain 
in mitochondria leading to reduced ATP production and uncoupling of glucose sensing from insulin secretion [36]. 

However, treatment of diabetic rats with Trifolium alexandrinum (TA) and Trifolium pratens (TP) extracts lead to 
reversed serum glucose, insulin and C-peptide levels nearly to the normal values. Taha et al [37] documented that the 
recovery of normal blood glucose levels in the treated diabetic rats could be directly attributable to the upregulated 
insulin and C-peptide levels. The improvement in insulin and C-peptide levels regarded to flavonoids-rich 
nutraceuticals, genistein and daidzein from TA and TP which exert antidiabetic effects [38]. They reported that the 
ability of daidzein to reduce the elevated glucose level in diabetic mice may be mediated by a main mechanism, including 
adenosine monophosphate-activated protein kinase (AMPK) activation and induction of glucose transporter 4 (GLUT4) 
translocation. Also, the elevation in insulin levels of diabetic rats treated with genistein may be attributed to its ability 
to regenerate β-cells and significant increase in the numerical density of islets that retained the ability to synthesize as 
well as secrete insulin [38].  

In the current study, the untreated diabetic rats exhibited significant reduction in liver and muscle glycogen contents. 
This result is in agreement with those of Abdulrazaq et al [36] who explained that glycogen levels in insulin-dependent 
tissues (liver and skeletal muscle) decrease as they depend on insulin for the influx of glucose. It was also reported that, 
an impaired glycogen synthesis could promote the occurrence of hyperglycemia and diabetes [40]. 

Administration of TA and TP extracts restored the glycogen content of liver and skeletal muscle. As for TA and TP 
treatment are able to produce more insulin from pancreatic β-cells, insulin promote intracellular glycogen deposition 
in the liver of diabetic rats by stimulating glycogen synthase and inhibiting glycogen phosphorylase activities [41]. In 
addition, genistein and daidzein enhanced the rate of glycogenesis [38]. 

In the current study, the untreated diabetic rats exhibited elevation in HbA1C. These results are consistent with the 
findings of Joshi et al [42] who reported that the supra-physiological level of glucose non-enzymatically reacts with 
hemoglobin to form increased HbA1C. 

 On contrast, the high levels of HbAlc in diabetic rats significantly lowered by the treatment with TA and TP extracts; 
this could be due to the improvement in insulin secretion from the remnant pancreatic β-cells in diabetic rats which 
consequently resulting in improvement in glycemic control [38]. They added, these effects may be due to the presence 
of a high content of flavonoids, which acts synergistically as antioxidants. Moreover,  presence of isoflavonoids in TP 
able to exert beneficial effects on glycosylation of hemoglobin through their antioxidative actions. This finding is 
supported by Govindaraj and Pillai [43] who reported that plant-derived isoflavones possess anti-glycation activity. 

The elevation in α-amylase activity observed in untreated diabetic rats could be due to the destruction of pancreatic 
tissue resulted from the oxidative stress generated in diabetic rats, which lead to the leakage of α-amylase into blood 
circulation [42]. On the other hand, Treatment with TA and TP extracts antagonized the increment in serum α-amylase 
activity in the diabetic rats. These results may due to the high potential of Trifolium extracts in lowering the post-
prandial hyperglycaemia through the inhibition of pancreatic α-amylase enzyme activity [44]. This may be regarded to 
presence of quercetin and luteolin, as constituents of TA and TP, could inhibit pancreatic α-amylase activity.  

It is worthwhile to note that STZ -induced diabetic rats displayed reduction in the activities of insulin dependent 
enzymes; hexokinase (HK), glucokinase (GK) and glucose-6-phosphate dehydrogenase (G6Pd) in the liver. The 
reduction in liver HK activity in the of STZ-induced diabetic rats may be the reason for the diminished consumption of 
glucose in the system and increased blood glucose level due to lack of insulin and loss of insulin receptor [35,45]. 
Treatment with TA and TP extracts significantly increased the activity of hepatic HK, which indicates the effective 
utilization of glucose and direct stimulation of glycolysis in tissues with increased glucose removal from the blood 
circulation [46]. The administration of TA and TP extracts increased in the activity of hepatic GK suggesting that the 
antihyperglycaemic action observed was as a result of increased glucose utilization in the liver as well as skeletal muscle 
[36]. The treatment with TA and TP extracts showed significant increase in the activities of hepatic G6Pd that might be 
due to the elevation of insulin secretion. This might increase glucose utilization through the pentose phosphate pathway, 
interfering with the mitochondrial respiratory chain and promoting the peripheral glucose utilization by enhancing 
anaerobic glycolysis [47], as evidenced by the increased glycogen content in the liver. 

https://07101vr7f-1105-y-https-www-sciencedirect-com.mplbci.ekb.eg/science/article/pii/S0753332216312380#bib0170
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In the present study, the elevation in the activity of the liver glucose-6-phosphatase (G6P) in STZ -treated rats might be 
due to insulin deficiency, since insulin decreases gluconeogenesis by decreasing the activities of key enzymes such as 
G6P [47]. On the other hand, administration of TA and TP extracts had positively modulated activities of this enzyme, 
probably due to a significant increase in the levels of insulin. The reduction in the activity of this gluconeogenic enzyme 
reveal the reduced endogenous glucose production from liver [35]. The regulation of gluconeogenic flux by the extract 
might be one of the possible mechanisms for its antihyperglycemic nature. Moreover, restoration of hepatic glycogen 
by Trifolium extracts may be due to inhibition of G6P in the liver, thereby preventing conversion of glucose-6-phosphate 
to glucose [47]. 

The elevation in the activities of AST, ALT and ALP, suggesting the hepatotoxic effect of STZ, which is one of the 
characteristic changes in diabetes[13]. It is worthwhile to note that the TA and TP -treated diabetic rats displayed a 
significant reduction in the activities of these enzymes in the serum [48]. Therefore, the changes in the activities of these 
enzymes indicate control of gluconeogenesis as confirmed by the diminished serum glucose levels.  Otherwise, 
genistein; one of the components of TA and TP, lowered the pathway enzymes in diabetic rats and inhibit the liver 
damage induced by STZ through its hypoglycemic potential [13]. In addition, biochanin A, found in TP, possesses multi-
mechanistic hepatoprotective activity which could be attributed to its antioxidant, anti-inflammatory and immune-
modulatory actions [49].  

The elevated serum LDH activity in the untreated diabetic rats is associated with impaired glucose-stimulated insulin 
secretion [41]. Thus, increased activity of LDH interferes with normal glucose metabolism and insulin secretion in the 
cells of pancreas and it may therefore be directly responsible for insulin secretory defects in diabetes.  However, 
treatment with TA and TP extracts to diabetic rats reverted the LDH activity to near normal most probably by regulating 
the proportion of pyruvate and NADH thereby indicating improved channeling of (pyruvate) glucose by mitochondrial 
oxidation [41]. 

In the present study, the diabetic rats exhibited hypercholesterolemia, elevated triglyceride (TG), elevated LDLC, 
elevated VLDL-C and reduced HDL-C level. These results indicate disturbances in lipid metabolism. The diabetics have 
abnormal lipid metabolism due to insulin deficiency in the body as a result of STZ -induced damage to pancreatic β-cells, 
since insulin can activate lipoprotein lipase (LPL), which hydrolyzes TGs [50]. Respecting to the present results, oral 
administration of TA and TP extracts to the diabetic rats improved the disturbance in the serum lipid profile. These data 
indicate the beneficial effects of TA and TP in improving lipid metabolism as supported by previous study, which 
demonstrates that TA and TP extracts could effectively prevent hypercholesterolemia as lipotropic factors [38].  
In addition, oral administration of TA and TP extracts clearly reverted the activity of serum lipase nearly back to the 
non-diabetic rats. The two Trifolium species, rich source of flavonoids, characterized by their ability to inhibit lipase 
activity and thus reduce fat absorption [44]. The inhibitory action of lipase decreased the hydrolysis of dietary TGs into 
monoglycerides and free fatty acids, as it lowered the TC, LDL-C and TG and increased HDL-C levels in the serum [50]. 

The elevated levels of oxidative stress in untreated diabetic rats, which confirmed by the increase in malondialdehyde 
(MDA), nitric oxide (NO) and advanced glycation end products (AGEs) and decline in the activities of enzymatic 
antioxidants; superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), total antioxidant capacity 
(TAC) and reduced glutathione (GSH) in both pancreas and liver tissues may be due to the decreased activity of 
antioxidant enzymes along with the elevated lipids peroxidation in diabetic rats also, may be due to glycation of these 
enzymes [50]. The reduced activities of SOD and CAT in the liver observed during diabetes is sensitive indices of 
hepatocellular damage and are the most sensitive in liver injury, they may result in deleterious effects as a result of the 
accumulation of O2- and H2O2 [48]. The generation of free radicals which are responsible for oxidative stress in diabetic 
animals and humans is known to be a sequence of one or a few of the mechanisms via glucose auto-oxidation, polyol 
pathway, protein glycation, lipids peroxidation and formation of AGEs along with inhibition of antioxidant enzyme 
activities [51]. In diabetic rats, GSH which co-substrate for GPx activity and cofactor for many enzymes, improves the 
scavenging capacity against free radicals induced oxidative stress [52]. Therefore, the depletion of GSH level in diabetic 
rats might be due to its utilization to alleviate the oxidative stress in diabetes [53]. The increased NO level may be related 
to the induction of nitric oxide synthase (NOS) isoenzymes this result is in accordance to those of Abdel Baky et al [54]. 
The overproduction of NO is considered as pro- inflammatory mediator leading to β-cells impairment or death thereby 
the rate of insulin synthesis is diminished [55].  

Co administration of TA and TP extracts with STZ-diabetic group resulted in an improvement of the oxidative 
parameters and enhancement in the antioxidant enzymes; this might suggest a protective and prophylactic effect 
against STZ action and might be mediated through the neutralization of oxygen free radicals [12]. They reported that 
the depleted enzymatic and non-enzymatic anti-oxidants and the elevated lipids peroxidation of diabetic rats were 
restored significantly with the treatment of TA and TP extracts. Such effects may be mediated through the active 
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phytoconstituents present in Trifolium extracts, like polyphenolic compounds and flavonoids, by either scavenging or 
quenching or neutralizing the free radicals or other ROS produced by STZ [7]. The indirect antioxidant protection of 
polyphenols has been shown by activation of 5' AMP-activated protein kinase (AMPK) pathway. This leads to the 
modulation of Nuclear factor (erythroid-derived 2)-like 2 (Nfr2), a transcription factor that controls many genes 
involved in antioxidant defense, activating endogenous defense systems [56]. Besides, Vlaisavljevic et al [8] reported 
that TP contain essential oil with best scavenging capacity to NO radical. Also, Dai et al [57] reported that quercetin has 
the potential to prevent excessive concentration of NO in pancreatic tissue.  

In the current study, STZ -treated rats showed elevations in pancreatic tumor necrosis factor -alpha (TNF-α) and 
interleukins (IL-1β and IL-6). These results are in agreement with other study which,  reported that STZ treatment lead 
to the production of ROS as a result of STZ -β cell interaction via GLUT-2 receptors, also this might be responsible for 
increasing production of proinflammatory cytokines (TNF-α, IL-1β, IFN-γ, IL-6, IL-18)[58]. Excessive IL-6 results in 
severe cytotoxicity in pancreatic islet cells and then leads to insulin resistance [59]. Moreover, oxidative stress affects 
adversely major signaling pathways and cellular mechanisms, including elevation of proinflammatory markers like 
TNF-α and ILs, which are directly associated with T2DM [42].  

In the present study, elevated pancreatic TNF-α, IL-1β and IL-6 were significantly reduced with the treatment of TA and 
TP extracts. These results indicated the effects of TA and TP extracts in preventing the production of deleterious 
cytokines involved in the development and progression of diabetes [42]. Also, Fan et al [60] indicated that 
phytoestrogens seem to have anti-inflammatory effects by inhibiting TNF -α, IL-1β and IL-6 expression of mRNA 
production.  

It was apparent from the present study that pancreatic caspase-3 and iNOS levels increased significantly in untreated 
diabetic rats. These results explained by Ibrahim and Abd El Maksoud [58] who revealed that elevation in tissue 
caspase-3 activity in diabetic rats indicating increased tissue apoptosis due to increased ROS levels.  

Furthermore, elevated levels of cytokines that are released by inflammatory cells in STZ exposed rats induce iNOS 
production and produce NO in pancreatic tissue [61] leading to cell damage and the surplus generation of NO in cells 
may restrain mitochondrial metabolism and contribute to elevated lipid peroxidation [62]. 

On the other hand, diabetic rats treated with TA and TP extracts exhibited decrement in iNOS levels. These results 
referred to that phytoestrogen exert anti-inflammatory effects by inhibiting NO and iNOS expression of mRNA 
production [60]. 

Daidzein and genistein reverted the increase in iNOS content which responsible for the production of the toxic free 
radical peroxinitrite [62]. Moreover, it was noticed that the cytoprotective effect of quercetin is associated with reduced 
expression of iNOS, decreased NO level and inhibition of NF-κB translocation [57].  

On the other hand, administration of TA and TP extracts to diabetic rats a caused reduction in pancreatic caspase-3 
level; this might be due to decline in pancreatic ROS [12]. Wang et al [45] reported that the diabetic apoptosis was 
inhibited after treatment with TP. They added that the anti-apoptotic effect of TP may be mediated by caspase-3. Also, 
SOD overexpression abrogated caspase-3 cleavage, DNA damage in type 2 diabetic mice [63]. 

The present observation elucidated that the levels of glucose transporter 4 (GLUT4) in both muscle tissues and pancreas 
were decreased in STZ -treated rats. These findings are in agreement with those of Cam et al[46] reported that the 
GLUT4 expression level decreased in skeletal muscle of STZ/nicotinamide -induced diabetic rats. Moreover, a common 
feature of adipose tissue and skeletal muscle metabolism is the increase in glucose influx in response to insulin mainly 
mediated by translocation of GLUT4 from storage vesicles into the plasma membrane [46].  

Otherwise, the reduction of GLUT4 expression in skeletal muscles is an early step to develop insulin resistance and 
T2DM [2]. With the foregoing, defective insulin – insulin receptor activity and decreased GLUT4 arising from impaired 
cell membrane translocation of GLUT4 may play a significant role in the pathogenesis of T2DM [65].  

The present study showed that treatment with TA and TP extracts to diabetic rats revealed elevation in the GLUT4 levels 
of the skeletal muscle and pancreas. This result agreed with Wang et al [45] who indicated increased muscle glycogen 
content, which is consistent with increased muscle glucose uptake regulated by GLUT4.  



Abdou et al. / World Journal of Advanced Research and Reviews, 2020, 06(03), 012–029 

25 
 

Furthermore, isoflavones such as genistein, daidzein, quercetin and procyanidins have antidiabetic properties by up-
regulation of GLUT4 levels and its translocation in skeletal muscle cells and adipocytes [46]. Thus, the modulation of 
GLUT4 could be one of the mechanisms involved with the anti-diabetic activity of the TA and TP extracts. 

The untreated diabetic rats exhibited down regulated gene expression level of pancreatic GLUT2. This result is 
consistent with the result of Yi et al [66] reported that the GLUT2 expression is down-regulated in pancreas of the 
diabetic rat model. This may be regarded to STZ enters the pancreatic β-cell via the low affinity GLUT2 in the plasma 
membrane and then accumulates within the cells causing DNA methylation and elicits diabetogenic action [2]. In 
addition, Rashid and Sil [61] postulated that elevated iNOS level in STZ administered animals resulted in an increment 
of NO that further reduces GLUT2 expression. Moreover, Prasath et al [55] observed that administration of STZ caused 
apoptosis of the pancreatic islets and consequently higher IL-1β level can also lead to cell membrane damage DNA 
strand breaks and thus down-regulation of GLUT2 mRNA expression. 

The supplementation of TA and TP extracts to diabetic rats caused improvement in pancreatic GLUT2 gene expression. 
It was reported that enhanced expression of pancreatic insulin from the existing β-cells of islets are responsible for the 
upregulation of GLUT2. Taha et al [37] reported that Trifolium sp. enriched with alkaloids, flavonoid and polyphenolic 
compounds caused the elevation in glucose transporter proteins by enhancing the insulin signaling cascade. 
Mechanistically it has been demonstrated that flavonoids can act antidiabetic potential through glucose transporters by 
enhancing GLUT2 expression in pancreatic β-cells that triggered by PI3K/PKB and AMPK-mediated pathways [37]. 
Quercetin showed protective effects by decreasing oxidative stress, preservation of pancreatic β-cell integrity, enhanced 
insulin secretion and glucose uptake through GLUT2 membrane receptor [67].  

In the present study, treatment with STZ lead to degeneration of the acinar cells with the presence of small vacuoles, 
also congestion, dilation and thickening of the blood vessels, degeneration of pancreatic islets with an irregular outline 
and vacuolated cytoplasm, these might be due to glucose toxicity and lipotoxicity [13]. 

 Otherwise, the observed pancreatic β-cell toxicity induced by STZ explained the reduction in the insulin level, These 
regarded to the production of ROS that led to lipid peroxidation and DNA damage [37]. 

However, treatment of diabetic rats with TA and TP extracts showed signs of regeneration of β-cells and improvement 
in the pancreatic tissue. This could be attributed to some of the flavonoids present in Trifolium sp., their protective 
mechanism of β-cell survival is the suppression of oxidative stress and subsequent inhibition of the caspase cascade and 
DNA damage, therefore, protects them against autophagy, apoptosis, or necrosis [68]. 

5. Conclusion 

It could be concluded that supplementation of TA or TP extracts caused diminution of the elevated oxidative stress, pro-
inflammatory cytokines and histopathological alterations in STZ-treated rats. Furthermore, TA or TP extracts 
supplementation caused improvement in GLUT4 levels of the skeletal muscle and pancreas, as well as caused up 
regulation in pancreatic GLUT2 gene expression. It would be worthwhile to investigate the effect of TA or TP extracts 
as a supplement under medically supervised as natural anti-hyperglycemic agents with diabetic patients. 
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