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Abstract 

Nodular goiter (NG) is an internationally important health problem. The aim of this exploratory study was to examine 
the content of silver (Ag), bromine (Br), calcium (Ca), chlorine (Cl), cobalt (Co), chromium (Cr), cooper (Cu), iron (Fe), 
mercury (Hg), iodine (I), potassium (K), magnesium (Mg), manganese (Mn), sodium (Na), rubidium (Rb), ammonium 
(Sb), scandium (Sc), selenium (Se), strontium (Sr), and zinc (Zn) in the normal thyroid and in the thyroid tissues with 
diagnosed colloid NG.. Thyroid tissue levels of twenty chemical elements (ChE) were prospectively evaluated in 46 
patients with NG and 105 healthy inhabitants. Measurements were performed using non-destructive energy-dispersive 
X-Ray fluorescent analysis combined with instrumental neutron activation analysis with high resolution spectrometry 
of short– and long-lived radionuclides. Tissue samples were divided into two portions. One was used for morphological 
study while the other was intended for ChE analysis. It was found that during a goitrous transformation the levels of Ag, 
Br, Cl, Co, Cu, Fe, Hg, Mg, Na, and Sc in thyroid tissue significantly increased, whereas the levels of I and Sr decrease. It 
was supposed that the changes in levels Ag, Br, Cl, Co, Cu, Fe, Hg, I, Mg, Na, Sc, and Sr in thyroid tissue can be used as NG 
markers.  

Keywords: Colloid nodular goiters; Intact thyroid; Chemical elements; Energy-dispersive X-ray fluorescent analysis; 
Instrumental neutron activation analysis 

1. Introduction

No less than 10 % of the world population is affected by goiter detected during the examination and palpation and most 
of these thyroidal lesions are nodular goiters (NG) [1]. However, using ultrasonography NG can be detected in almost 
70% of the general population [2]. NG is also known as endemic nodular goitre, simple goitre, nodular hyperplasia, 
nontoxic uninodular goitre or multinodular goiter [3]. NG is benign lesions; however, during clinical examination, they 
can mimic malignant tumors. NG can be hyperfunctioning, hypofunctioning, and normal functioning. Euthyroid NG is 
defined as a local enlargement of thyroid without accompanying disturbance in thyroid function [3].  

For over 20th century, there was the dominant opinion that NG is the simple consequence of iodine (I) deficiency. 
However, it was found that NG is a frequent disease even in those countries and regions where the population is never 
exposed to I shortage [4]. Moreover, it was shown that I excess has severe consequences on human health and associated 
with the presence of thyroidal disfunctions and autoimmunity, NG and diffuse goiter, benign and malignant tumors of 
gland [5-8]. It was also demonstrated that besides the I deficiency and excess many other dietary, environmental, and 
occupational factors are associated with the NG incidence [9-11]. Among them a disturbance of evolutionary stable 
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input of many (ChE) in human body after industrial revolution plays a significant role in etiology of thyroidal disorders 
[12].  

Besides I involved in thyroid function, other ChE have also essential physiological functions such as maintenance and 
regulation of cell function, gene regulation, activation or inhibition of enzymatic reactions, and regulation of membrane 
function [13]. Essential or toxic (goitrogenic, mutagenic, carcinogenic) properties of ChE depend on tissue-specific need 
or tolerance, respectively [13]. Excessive accumulation or an imbalance of the ChE may disturb the cell functions and 
may result in cellular degeneration, death, benign or malignant transformation [13-15].  

In our previous studies the complex of in vivo and in vitro nuclear analytical and related methods was developed and 
used for the investigation of I and other ChE contents in the normal and pathological thyroid [16-22]. Level of I in the 
normal thyroid was investigated in relation to age, gender and some non-thyroidal diseases [23,24]. After that, 
variations of ChE content with age in the thyroid of males and females were studied and age- and gender-dependence 
of some ChE was observed [25-41]. Furthermore, a significant difference between some ChE contents in normal and 
cancerous thyroid was demonstrated [42-47].  

To date, the pathogenesis of NG has to be considered as multifactorial. The present study was performed to clarify the 
role of twenty ChE in the maintenance of thyroid growth and goitrogenesis. Having this in mind, our aim was to assess 
the silver (Ag), bromine (Br), calcium (Ca), chlorine (Cl), cobalt (Co), chromium (Cr), cooper (Cu), iron (Fe), mercury 
(Hg), I, potassium (K), magnesium (Mg), manganese (Mn), sodium (Na), rubidium (Rb), ammonium (Sb), scandium (Sc), 
selenium (Se), strontium (Sr), and zinc (Zn) contents in NG tissue using energy dispersive X-ray fluorescent analysis 
(EDXRF) combined with non-destructive instrumental neutron activation analysis with high resolution spectrometry of 
sort-lived radionuclides (INAA-SLR) and long-lived radionuclides (INAA-LLR). A further aim was to compare the levels 
of these twenty ChE in the goitrous thyroid with those in intact (normal) gland of apparently healthy persons.  

2. Material and methods 

2.1. Samples 

All patients suffered from NG (n=46, mean age MSD was 4812 years, range 30-64) were hospitalized in the Head and 
Neck Department of the Medical Radiological Research Centre. Thick-needle puncture biopsy of suspicious nodules of 
the thyroid was performed for every patient, to permit morphological study of thyroid tissue at these sites and to 
estimate their ChE contents. For all patients the diagnosis has been confirmed by clinical and morphological results 
obtained during studies of biopsy and resected materials. Histological conclusion for all thyroidal lesions was the colloid 
NG. 

Normal thyroids for the control group samples were removed at necropsy from 105 deceased (mean age 4421 years, 
range 2-87), who had died suddenly. The majority of deaths were due to trauma. A histological examination in the 
control group was used to control the age norm conformity, as well as to confirm the absence of micro-nodules and 
latent cancer.  

All tissue samples were divided into two portions using a titanium scalpel [48]. One was used for morphological study 
while the other was intended for chemical element analysis. After the samples intended for chemical element analysis 
were weighed, they were freeze-dried and homogenized [49].  

2.2. Sample preparation and methods 

For EDXRF the pounded sample weighing about 8 mg was applied to the piece of Scotch tape serving as an adhesive 
fixing backing. The content of Br, Cu, Fe, Rb, Sr, and Zn were determined by EDXRF. Details of the relevant facility for 
this method, source with 109Cd radionuclide, methods of analysis and the results of quality control were presented in 
our earlier publications concerning the EDXRF of ChE contents in human thyroid and prostate tissue [25, 26, 50]. 

The pounded samples weighing about 5-10 mg (for biopsy) and 100 mg (for resected materials) were used for chemical 
element measurement by INAA-SLR. The samples for INAA-SLR were sealed separately in thin polyethylene films 
washed beforehand with acetone and rectified alcohol. The sealed samples were placed in labeled polyethylene 
ampoules. The content of Br, Ca, Cl, I, K, Mg, Mn, and Na were determined by INAA-SLR using a horizontal channel 
equipped with the pneumatic rabbit system of the WWR-c research nuclear reactor (Branch of Karpov Institute, 
Obninsk). Details of used neutron flux, nuclear reactions, radionuclides, gamma-energies, and spectrometric unit were 
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presented in our earlier publications concerning the INAA-SLR of ChE contents in human thyroid, scalp hair, and 
prostate [27,28,51-53]  

In a few days after INAA-SLR all thyroid samples were repacked separately in a high-purity aluminum foil washed with 
rectified alcohol beforehand and placed in a nitric acid-washed quartz ampoule and used for INAA-LLR. A vertical 
channel of the WWR-c research nuclear reactor (Branch of Karpov Institute, Obninsk).was applied to determine the 
content of Ag, Co, Cr, Fe, Hg, Rb, Sb, Sc, Se, and Zn by INAA-LLR. Details of used neutron flux, nuclear reactions, 
radionuclides, gamma-energies, and spectrometric unit were presented in our earlier publications concerning the INAA-
LLR of ChE contents in human thyroid, scalp hair, and prostate [29,30,51,54]. 

2.3. Standards and certified reference materials 

To determine contents of the elements by comparison with a known standard, biological synthetic standards (BSS) 
prepared from phenol-formaldehyde resins were used [55]. In addition to BSS, aliquots of commercial, chemically pure 
compounds were also used as standards. For each method ten certified reference material IAEA H-4 (animal muscle) 
and IAEA HH-1 (human hair) sub-samples were treated and analyzed in the same conditions that thyroid samples to 
estimate the precision and accuracy of results. 

2.4. Statistical analysis 

A dedicated computer program for INAA mode optimization was used [56]. All thyroid samples were prepared in 
duplicate, and mean values of ChE contents were used. Mean values of ChEcontents were used in final calculation for 
the Br, Fe, Rb, and Zn mass fractions measured by two methods. Using Microsoft Office Excel, a summary of the statistics, 
including, arithmetic mean, standard deviation, standard error of mean, minimum and maximum values, median, 
percentiles with 0.025 and 0.975 levels was calculated for ChE contents. The difference in the results between two 
groups (normal and goitrous thyroid) was evaluated by the parametric Student’s t-test and non-parametric Wilcoxon-
Mann-Whitney U-test.  

3. Results  

Table 1 depicts our data for Ag, Br, Ca, Cl, Co, Cr, Cu, Fe, Hg, I, K, Mg, Mn, Na, Rb, Sb, Sc, Se, Sr, and Zn mass fraction mass 
fractions in ten sub-samples of IAEA H-4 (animal muscle) and IAEA HH-1 (human hair) certified reference material and 
the certified values of this material. 

Table 1 EDXRF, INAA-SLR and INAA-LLR data of chemical element contents in certified reference material IAEA H-4 
(animal muscle) and IAEA HH-1 (human hair) compared to certified values ((mg/kg, dry mass basis). 

Element IAEA H-4 

animal muscle 

This work  

results 

IAEA HH-1 

human hair 

This work 

 results 

Ag - 0.0330.008 0.190.06b 0.180.05 

Br 4.11.1a 5.009 4.22.1b 3.91.6 

Ca 18858b 23859 522160a 52542 

Cl 1890130b 1950230 2265478a 2210340 

Co 0.00270.0010b 0.00340.0008 5.970.42a 5.41.1 

Cr 0.060.04b 0.0710.010 0.270.16b ≤0.3 

Cu 4.01.0a 3.91.1 10.23.2a - 

Fe 49.16.5a 47.01.0 23.73.1a 25.14.3 

Hg 0.0140.005b 0.0150.004 1.700.09a 1.540.14 

I 0.080.10b <1.0 20.38.9b 19.16.2 

K 158401440a 162003800 9.25.2b 10.74.0 

Mg 1050140a 1100190 62.09.6b 64.718.6 
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Mn 0.520.08a 0.550.11 0.850.25a 0.930.16 

Na 2060330a 2190140 12.64.8b 14.02.7 

Rb 18.73.5a 224 0.940.09b 0.890.17 

Sb 0.00560.0031b 0.00610.0021 0.0310.010b 0.0330.009 

Sc 0.00590.0034b 0.00150.0009 - - 

Se 0.280.08a 0.2810.014 0.350.02a 0.370.08 

Sr - <1 0.820.16b 1.240.57 

Zn 86.311.5a 912 1749a 17317 

M – arithmetical mean, SD – standard deviation, a – certified values, b – information values 

The comparison of our results for the Br, Fe, Rb, and Zn mass fractions (mg/kg, dry mass basis) in the normal human 
thyroid obtained by both EDXRF and INAA methods is shown in Table 2. 

Table 2 Comparison of the mean values (MSD) of the chemical element mass fractions (mg/kg, dry mass basis) in the 
normal human thyroid obtained by both EDXRF and INAA methods 

Element EDXRF (M1) INAA (M2) ∆=[(M1 – M2)/M1] ∙100% 

Br 13.9±12.0 16.3±11.6 (INAA-SLR) -17.3 

Fe 222±102 225±100 (INAA-LLR) -1.4 

Rb 9.03±6.17 7.37±4.10 (INAA-LLR) 18.4 

Zn 112±44 98±42 (INAA-LLR) 12.5 

M – arithmetic mean, SD– standard deviation 

Table 3 presents certain statistical parameters (arithmetic mean, standard deviation, standard error of mean, minimal 
and maximal values, median, percentiles with 0.025 and 0.975 levels) of the Ag, Br, Ca, Cl, Co, Cr, Cu, Fe, Hg, I, K, Mg, Mn, 
Na, Rb, Sb, Sc, Se, Sr, and Zn mass fraction mass fraction in normal and goitrous thyroid. 

Table 3 Some statistical parameters of Ag, Br, Ca, Cl, Co, Cr, Cu, Fe, Hg, I, K, Mg, Mn, Na, Rb, Sb, Sc, Se, Sr, and Zn mass 
fraction (mg/kg, dry mass basis) in normal thyroid and colloid nodular goiter 

Tissue Element Mean SD SEM Min Max Median P 0.025 P 0.975 

Normal Ag 0.0151 0.0140 0.0016 0.0012 0.0800 0.0121 0.0017 0.0454 

n=105 Br 14.9 11.0 1.2 1.90 54.1 11.6 2.56 49.3 

 Ca 1711 1022 109 414 6230 1458 460 3805 

 Cl 3400 1452 174 1030 6000 3470 1244 5869 

 Co 0.0399 0.0271 0.0030 0.0046 0.140 0.0327 0.0134 0.124 

 Cr 0.539 0.272 0.032 0.130 1.30 0.477 0.158 1.08 

 Cu 4.23 1.52 0.18 0.500 7.50 4.15 1.57 7.27 

 Fe 223 93 10 51.0 512 221 74.2 433 

 Hg 0.0421 0.0358 0.0041 0.0065 0.180 0.0304 0.0091 0.150 

 I 1841 1027 107 114 5061 1695 230 4232 

 K 6071 2773 306 1740 14300 5477 2541 13285 

 Mg 285 139 17 66.0 930 271 81.6 541 

 Mn 1.35 0.54 0.07 0.510 4.18 1.32 0.537 2.23 

 Na 6702 1764 178 3050 13453 6690 3855 10709 

 Rb 8.16 4.55 0.49 1.66 29.4 7.37 3.08 19.3 
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 Sb 0.111 0.072 0.008 0.0047 0.308 0.103 0.0117 0.280 

 Sc 0.0046 0.0038 0.0008 0.0002 0.0143 0.0042 0.00035 0.0131 

 Se 2.32 1.29 0.14 0.439 5.80 2.01 0.775 5.65 

 Sr 4.55 3.22 0.37 0.100 13.7 3.70 0.483 12.3 

 Zn 105.1 40.1 4.3 7.10 221 104.9 39.2 186 

Goiter Ag 0.226 0.236 0.042 0.0020 0.874 0.160 0.0020 0.849 

n=46 Br 36.3 31.3 7.0 8.00 131 26.6 8.95 110 

 Ca 1393 855 168 209 4333 1280 258 3210 

 Cl 9117 3866 1223 4226 16786 8259 4504 15869 

 Co 0.0628 0.0287 0.0050 0.0150 0.147 0.0623 0.0215 0.128 

 Cr 0.849 0.834 0.150 0.135 3.65 0.540 0.142 2.89 

 Cu 8.51 7.15 1.60 2.90 34.8 5.95 3.00 26.2 

 Fe 324 309 49 62.0 1350 197 68.8 1080 

 Hg 0.987 0.726 0.124 0.0817 3.01 0.920 0.0968 2.36 

 I 1144 943 149 29.0 3715 918 104 3619 

 K 6518 2304 443 3353 12222 6185 3395 10984 

 Mg 351 148 28 13.0 612 371 45.5 559 

 Mn 1.78 1.13 0.23 0.370 5.50 1.70 0.418 4.12 

 Na 11335 3597 705 7229 22381 10413 7277 19009 

 Rb 8.28 3.68 0.57 1.00 16.6 7.58 2.53 15.8 

 Sb 0.146 0.121 0.021 0.0102 0.425 0.103 0.0128 0.419 

 Sc 0.0130 0.0201 0.0040 0.0002 0.0910 0.0058 0.0002 0.0701 

 Se 3.09 2.59 0.44 0.994 12.6 2.37 1.16 12.1 

 Sr 2.43 2.73 0.49 0.80 13.7 1.64 0.80 10.6 

 Zn 119 53.1 8.2 47.0 270 105 49.1 246 
M – arithmetic mean, SD – standard deviation, SEM – standard error of mean, Min – minimum value, Max – maximum value, P 0.025 – percentile 

with 0.025 level, P 0.975 – percentile with 0.975 level 

The comparison of our results with published data for Ag, Br, Ca, Cl, Co, Cr, Cu, Fe, Hg, I, K, Mg, Mn, Na, Rb, Sb, Sc, Se, Sr, 
and Zn mass fraction in normal and goitrous thyroid [57-92] is shown in Table 4. 

Table 4 Median, minimum and maximum value of means of twenty chemical element contents in the normal and 
goitrous thyroid according to data from the literature in comparison with our results (mg/kg, dry mass basis) 

Tissue Published data [Reference] This work  

Element Median of 

 means 

(n)* 

Minimum of 

 means  

M or M±SD, (n)** 

Maximum of 

 means  

M or M±SD, (n)**  

Males and females  

M±SD 

Normal 

Ag 0.21 (12) 0.000784 (16) [57] 1.201.24 (105) [58] 0.0151±0.0140 

Br 18.1 (11) 5.12 (44) [57] 28444 (14) [59] 14.9±10.9 

Ca 1600 (17) 840240 (10) [60] 3800320 (29) [60] 1692±1022 

Cl 6800 (5) 80480 (4) [61] 8000 (-) [62] 3400±1452 

Co 0.306 (25) 0.016 (66) [63] 70.440.8 (14) [59] 0.0399±0.0271 

Cr 0.69 (17) 0.088 (83) [64] 24.82.4 (4) [61] 0.539±0.272 



World Journal of Advanced Research and Reviews, 2021, 11(02), 130–146 

135 

Cu 5.94 (61) 0.16 (83) [64] 22022 (10) [61] 4.23±1.52 

Fe 252 (21) 56 (120) [65] 3360 (25) [66] 223±93 

Hg 0.08 (13) 0.00080.0002 (10) [60] 39640 (4) [61] 0.0421±0.0358 

I 1888 (95) 1598 (23) [67] 57722708 (50) [68] 1841±1027 

K 4400 (16) 46.44.8 (4) [61] 6090 (17) [69] 6071±2773 

Mg 390 (16) 3.5 (-) [70] 1520 (20) [71] 285±139 

Mn 1.62 (40) 0.076 (83) [64] 69.27.2 (4) [61] 1.35±0.58 

Na 8000 (9) 438 (-) [72] 100005000 (11) [73] 6702±1764 

Rb 7.8 (9) ≤0.85 (29) [60] 294191 (14) [59] 8.20±4.54 

Sb 0.15 (10) 0.0400.003 (-) [72] ≤ 12.4(-) [74] 0.111±0.072 

Sc 0.009 (4) 0.00180.0003 (17) [75] 0.0140.005 (10) [60] 0.0046±0.0038 

Se 2.32 (21) 0.436 (40) [63] 756680 (14) [59] 2.32±1.29 

Sr 0.73 (9) 0.550.26 (21) [76] 46.84.8 (4) [61] 4.55±3.22 

Zn 110 (56) 2.1 (-) [70] 820204 (14) [59] 105±40 

Goitrous 

Ag 0.210 (4) 0.0980.042 (19) [77] 2.56 (167) [78] 0.2260.236 

Br 480 (5) 9 (5) [79] 777 (1) [80] 36.331.3 

Ca 3168(8) 600 (1) [79] 9200 (1) [79] 1393855 

Cl - - - 91173866 

Co 0.67 (12) 0.1100.003 (64) [81] 62.822.4 (11) [59] 0.06280.0287 

Cr 3.66 (5) 0.72 (51) [82] 25.2 (25) [66] 0.8490.834 

Cu 6.52 (8) 1.04 (130) [63] 12052 (11) [59] 8.517.15 

Fe 390 (5) 12852 (13) [83] 48483056 (11) [59] 324309 

Hg - - - 0.9870.726 

I 770 (44) 52 (1) [84] 2800 (4) [85] 1144943 

K 3725 (4) 276 (75) [86] 6030620 (-) [87] 65182304 

Mg 834 (4) 588388 (13) [83] 1616 (70) [71] 351148 

Mn 2.64 (21) 0.352 (130) [63] 34.9 (101) [88] 1.781.13 

Na 3360 (1) 3360 (25) [66] 3360 (25) [66] 113353597 

Rb 7.5 (2) 7,0 (10) [75] 864148 (11) [59] 8.283.68 

Sb 0.63 (1) 0.15 (19) [89] 1.10 (19) [89] 0.1460.121 

Sc - - - 0.01300.0201 

Se 2.60 (8) 0.248 (41) [63] 174116 (11) [59] 3.092.59 

Sr 1.45 (2) 1.26 (25) [66] 1,64±1,44 (51) [90] 2.432.73 

Zn 146 (25) 22.4 (130) [91] 1236560 (2) [92] 11953.1 

M –arithmetic mean, SD – standard deviation, (n)* – number of all references, (n)** – number of samples 
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The ratios of means and the difference between mean values of Ag, Br, Ca, Cl, Co, Cr, Cu, Fe, Hg, I, K, Mg, Mn, Na, Rb, Sb, 
Sc, Se, Sr, and Zn mass fractions in normal and goitrous thyroid are presented in Table 5.  

Table 5 Differences between mean values (MSEM) of Ag, Br, Ca, Cl, Co, Cr, Cu, Fe, Hg, I, K, Mg, Mn, Na, Rb, Sb, Sc, Se, Sr, 
and Zn mass fraction (mg/kg, dry mass basis) in normal thyroid and colloid nodular goiter 

Element Thyroid tissue Ratio 

Norm 

n=105 

Goiter 

n=41 

Student’s t-test 

p 

U-test 

p 

Goiter 

to Norm 

Ag 0.0151±0.0016 0.2260.042 0.000019 ≤0.01 15.0 

Br 14.9±1.2 36.37.0 0.0067 ≤0.01 2.44 

Ca 1711±109 1393168 0.118 >0.05 0.81 

Cl 3400±174 91171223 0.0011 ≤0.01 2.68 

Co 0.0399±0.0030 0.06280.0050 0.00023 ≤0.01 1.57 

Cr 0.539±0.032 0.8490.150 0.051 >0.05 1.58 

Cu 4.23±0.18 8.511.60 0.015 ≤0.01 2.01 

Fe 223±10 32449 0.049 ≤0.01 1.45 

Hg 0.0421±0.0041 0.9870.124 0.0000000098 ≤0.01 23.4 

I 1841±107 1144149 0.00028 ≤0.01 0.62 

K 6071±306 6518443 0.410 >0.05 1.07 

Mg 285±17 35128 0.049 ≤0.01 1.23 

Mn 1.35±0.07 1.780.23 0.079 >0.05 1.32 

Na 6702±178 11335705 0.00000066 ≤0.01 1.69 

Rb 8.16±0.49 8.280.57 0.874 >0.05 1.01 

Sb 0.111±0.008 0.1460.021 0.119 >0.05 1.32 

Sc 0.0046±0.0008 0.01300.0040 0.037 ≤0.01 2.83 

Se 2.32±0.14 3.090.44 0.105 >0.05 1.33 

Sr 4.55±0.37 2.430.49 0.0011 ≤0.01 0.53 

Zn 105.1±4.3 1198.2 0.148 >0.05 1.13 

M – arithmetic mean, SEM – standard error of mean, statistically significant values are in bold. 

4. Discussion 

4.1. Precision and accuracy of results 

A good agreement of our results for the Ag, Br, Ca, Cl, Co, Cr, Cu, Fe, Hg, I, K, Mg, Mn, Na, Rb, Sb, Sc, Se, Sr, and Zn mass 
fractions with the certified values of CRM IAEA H-4 and CRM IAEA HH-1 (Table 1) as well as the similarity of the means 
of the Br, Fe, Rb, and Zn mass fractions in the normal human thyroid determined by both EDXRF and INAA methods 
(Table 2) demonstrates an acceptable precision and accuracy of the results obtained in the study and presented in 
Tables 3-5. 

The mean values and all selected statistical parameters were calculated for twenty ChE (Ag, Br, Ca, Cl, Co, Cr, Cu, Fe, Hg, 
I, K, Mg, Mn, Na, Rb, Sb, Sc, Se, Sr, and Zn) mass fractions (Table 3). The mass fraction of Ag, Br, Ca, Cl, Co, Cr, Cu, Fe, Hg, 
I, K, Mg, Mn, Na, Rb, Sb, Sc, Se, Sr, and Zn were measured in all, or a major portion of normal and goitrous tissue samples.  
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4.2. Comparison with published data 

Values obtained for Br, Ca, Cl, Cr, Cu, Fe, Hg, I, K, Mg, Mn, Na, Rb, Sb, Sc, Se, and Zn contents in the normal human thyroid 
(Table 4) agree well with median of mean values reported by other researches [57-92]. The obtained means for Ag and 
Co were almost one order of magnitude lower whereas mean for Sr was 6.2 times higher median of previously reported 
means, but, nevertheless, inside the range of means (Table 4). A number of values for ChE mass fractions were not 
expressed on a dry mass basis by the authors of the cited references. However, we calculated these values using 
published data for water (75%) [93] and ash (4.16% on dry mass basis) [94] contents in thyroid of adults.  

Data cited in Table 4 for normal thyroid also includes samples obtained from patients who died from different non-
endocrine diseases. In our previous study it was shown that some non-endocrine diseases can effect on ChE contents in 
thyroid [24]. Moreover, in many studies the “normal” thyroid means a visually non-affected tissue adjacent to benign or 
malignant thyroidal nodules. However, there are no data on a comparison between the ChE contents in such kind of 
samples and those in thyroid of healthy persons, which permits to confirm their identity. 

In goitrous thyroid (Table 4) our results were comparable with published data for Ag, Ca, Cu, Fe, I, Mn, Rb, Se, and Zn 
contents. The obtained means for Br and Co were approximately one order of magnitude lower median of previously 
reported means. The obtained mean for Br was inside the range of reported means, whereas the obtained mean for Co 
was lower the minimal mean of range (Table 4). The obtained means for Cr, Mg, and Sb were 4.3, 2.4, and 4.3 times, 
respectively, lower the median of previously reported result and also lower the minimal level of the range of these 
means (Table 4). At the same time, mean for K, Na, and Sr was 1.7, 3.4, and 1.7 times, respectively, higher median of 
previously reported means and also higher the upper level of the range of these means (Table 4). No published data 
referring Cl, Hg, and Sc contents of goitrous thyroid tissue were found. 

The range of means of Ag, Br, Ca, Cl, Co, Cr, Cu, Fe, Hg, I, K, Mg, Mn, Na, Rb, Sb, Sc, Se, Sr, and Zn level reported in the 
literature for normal and for goitrous thyroid vary widely (Table 4). This can be explained by a dependence of ChE 
content on many factors, including “normality” of thyroid samples (see above), the region of the thyroid, from which the 
sample was taken, age, gender, ethnicity, mass of the gland, and the goiter stage. Not all these factors were strictly 
controlled in cited studies. However, in our opinion, the leading causes of inter-observer variability can be attributed to 
the accuracy of the analytical techniques, sample preparation methods, and inability of taking uniform samples from 
the affected tissues. It was insufficient quality control of results in these studies. In many scientific reports, tissue 
samples were ashed or dried at high temperature for many hours. In other cases, thyroid samples were treated with 
solvents (distilled water, ethanol, formalin etc). There is evidence that during ashing, drying and digestion at high 
temperature some quantities of certain ChE are lost as a result of this treatment. That concerns not only such volatile 
halogen as Br, but also other ChE investigated in the study [49,95,96]. 

4.3. Effect of goitrous transformation on ChE contents 

From Table 5, it is observed that in goitrous tissue the mass fraction of Ag, Br, Cl, Cu, Hg, and Sc are approximately 15.0, 
2.4, 2.7, 2.0, 23.4 and 2.8 times, respectively, higher and also mass fractions of Co, Fe, Mg, and Na are almost in 57%, 
45%, 23%, and 69%, respectively, significantly higher than in normal tissues of the thyroid. In contrast, the mass 
fractions of I and Sr are 38% and 47%, respectively, lower. Thus, if we accept the ChE contents in thyroid glands in the 
control group as a norm, we have to conclude that with a goitrous transformation the levels of Ag, Br, Cl, Co, Cu, Fe, Hg, 
Mg, Na, and Sc in thyroid tissue significantly increased whereas the levels of I and Sr decrease.  

4.4. Role of ChE in goitrous transformation of the thyroid 

Characteristically, elevated or reduced levels of ChE observed in goitrous tissues are discussed in terms of their potential 
role in the initiation and promotion of thyroid goiter. In other words, using the low or high levels of the ChE in goitrous 
tissues researchers try to determine the goitrogenic role of the deficiency or excess of each ChE in investigated organ. 
In our opinion, abnormal levels of many ChE in goiter could be and cause, and also effect of goitrous transformation. 
From the results of such kind studies, it is not always possible to decide whether the measured decrease or increase in 
ChE level in pathologically altered tissue is the reason for alterations or vice versa. 

4.4.1. Silver 

Ag is a ChE with no recognized trace metal value in the human body [97]. Ag in metal form and inorganic Ag compounds 
ionize in the presence of water, body fluids or tissue exudates. The silver ion Ag+ is biologically active and readily 
interacts with proteins, amino acid residues, free anions and receptors on mammalian and eukaryotic cell membranes 
[98]. Besides such the adverse effects of chronic exposure to Ag as a permanent bluish-gray discoloration of the skin 
(argyria) or eyes (argyrosis), exposure to soluble Ag compounds may produce other toxic effects, including liver and 
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kidney damage, irritation of the eyes, skin, respiratory, and intestinal tract, and changes in blood cells [99]. More 
detailed knowledge of the Ag toxicity can lead to a better understanding of the impact on human health, including 

thyroid function. 

4.4.2. Bromine  

This is one of the most abundant and ubiquitous of the recognized ChE in the biosphere. Inorganic bromide is the ionic 
form of bromine which exerts therapeutic as well as toxic effects. An enhanced intake of bromide could interfere with 
the metabolism of iodine at the whole-body level. In the thyroid gland the biological behavior of bromide is more similar 
to the biological behavior of iodide [100].  

In our previous studies, we found a significant age-related increase of Br content in human thyroid [25-28,31,32]. 
Therefore, a goitrogenic and, probably, carcinogenic effect of excessive Br levels in the thyroid of old females was 
assumed. On the one hand, elevated levels of Br in NG tissues, observed in the present study, supports this conclusion. 
But, on the other hand, bromide compounds, especially potassium bromide (KBr), sodium bromide (NaBr), and 
ammonium bromide (NH4Br), are frequently used as sedatives in Russia [101]. It may be the reason for elevated levels 
of Br in specimens of patients with NG.  

4.4.3. Chlorine 

Cl is a ubiquitous, extracellular electrolyte essential to more than one metabolic pathway. Cl exists in the form of chloride 
in the human body. In the body, it is mostly present as sodium chloride. Therefore, as usual, there is a correlation 
between Na and Cl contents in tissues and fluids of human body. It is well known that Cl mass fractions in samples 
depend mainly on the extracellular water volume, including the blood volumes, in tissues [102]. Colloid is the 
extracellular liquid. Thus, it is possible to speculate that colloid NG are characterized by an increase of the mean value 
of the Cl mass fraction because the level of colloid is higher than that in normal thyroid tissue.  

4.4.4. Cobalt 

Health effects of high Co occupational, environmental, dietary and medical exposure are characterized by a complex 
clinical syndrome, mainly including neurological, cardiovascular and endocrine deficits, including hypothyroidism and 
goiter [103,104]. Co is genotoxic and carcinogenic, mainly caused by oxidative DNA damage by reactive oxygen species, 
perhaps combined with inhibition of DNA repair [105]. In our previous studies it was found a significant age-related 
increase of Co content in female thyroid [29]. Therefore, a goitrogenic and, probably, carcinogenic effect of excessive Co 
level in the thyroid of old females was assumed. Elevated level of Co in NG tissues, observed in the present study, 

supports this conclusion. 

4.4.5. Copper 

This is a ubiquitous ChE in the human body which plays many roles at different levels. Various Cu-enzymes (such as 
amine oxidase, ceruloplasmin, cytochrome-c oxidase, dopamine-monooxygenase, extracellular superoxide dismutase, 
lysyl oxidase, peptidylglycineamidating monoxygenase, Cu/Zn superoxide dismutase, and tyrosinase) mediate the 
effects of Cu deficiency or excess. Cu excess can have severe negative impacts. Cu generates oxygen radicals and many 
investigators have hypothesized that excess copper might cause cellular injury via an oxidative pathway, giving rise to 
enhanced lipid peroxidation, thiol oxidation, and, ultimately, DNA damage [106-108]. Thus, Cu accumulation in thyroid 
parenchyma with age may be involved in oxidative stress, dwindling gland function, and increasing risk of goiter or 
cancer [25,26,33,34]. The significantly elevated level of Cu in thyroid goitrous tissue, observed in the present study, 
supports this speculation. However, an overall comprehension of Cu homeostasis and physiology, which is not yet 
acquired, is mandatory to establish Cu exact role in the thyroid goiter etiology and metabolism.  

Representative literature data on the Cu content in NG are limited. Moreover, there are great contradictions in the 
results between the reported studies. For example, Kolomiitseva [109] and Fal'fushins'ka at al.[110] reported that the 
content of Cu was 1.3 and 2 times, respectively, higher in goitrous tissues compared with that in normal thyroid. These 
data are in good agreement with our results. The completely opposite results were demonstrated by Błazewicz et al 
[81] and Stojsavljević et al [63]. They found that the content of Cu was reduced in NG. 

4.4.6. Iron 

It is well known that Fe as ChE is involved in many very important functions and biochemical reactions of human body. 
Fe metabolism is therefore very carefully regulated at both a systemic and cellular level [111,112]. Under the impact of 
age and multiple environmental factors the Fe metabolism may become dysregulated with attendant accumulation of 
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this metal excess in tissues and organs, including thyroid [25,26,29-34]. Most experimental and epidemiological data 
support the hypothesis that Fe overload is a risk factor for benign and malignant tumors [113]. This goitrogenic and 
oncogenic effect could be explained by an overproduction of ROS and free radicals [114].  

4.4.7. Mercury 

Hg is one of the most dangerous environmental pollutants [115]. The growing use of this metal in diverse areas of 
industry has resulted in a significant increase of environment contamination and episodes of human intoxication. Hg 
damages the central nervous system and has irreparable effects on the kidneys [116]. Hg may also harm a developing 
fetus and decrease fertility in men and women [117]. Besides these effects, Hg has been classified as certain or probable 
carcinogen by the International Agency for Research on Cancer [118]. For example, in Hg polluted area thyroid cancer 
incidence was almost 2 times higher than in in adjacent control areas [119].  

Negative effects of Hg are due to the interference of this metal in cellular signaling pathways and protein synthesis 
during the period of development. Since it bonds chemically with the sulfur hydride groups of proteins, it causes damage 

to the cell membrane and decreases the amount of RNA [120]. Moreover, it was shown that Hg may be involved in four 
main processes that lead to genotoxicity: generation of free radicals and oxidative stress, action on microtubules, 
influence on DNA repair mechanisms and direct interaction with DNA molecules [121].  

4.4.8. Iodine 

Compared to other soft tissues, the human thyroid gland has higher levels of I, because this element plays an important 
role in its normal functions, through the production of thyroid hormones (thyroxin and triiodothyronine) which are 
essential for cellular oxidation, growth, reproduction, and the activity of the central and autonomic nervous system. The 
I deficiency is one of the main causes of NG transformation, which leads to a significant reduction in I content associated 
with functional characteristics of the human thyroid tissue.  

4.4.9. Magnesium 

Mg is abundant in the human body. This ChE is essential for the functions of more than 300 enzymes (e.g. alkaline 
phosphatases, ATP-ases, phosphokinases, the oxidative phosphorylation pathway). It plays a crucial role in many cell 
functions such as energy metabolism, protein and DNA syntheses, and cytoskeleton activation. Moreover, Mg plays a 
central role in determining the clinical picture associated with thyroid disease [122]. Little elevated Mg level in NG 

tissues possibly caused by the high Mg requirement of growing goitrous cells [123].  

4.4.10. Sodium 

Na is mainly an extracellular electrolyte and its elevated level in goitrous thyroid might link with a high content of colloid 
(see Chlorine).  

4.4.11. Scandium 

Sc is a rare earth ChE. Information about its physiological role is very limited. However, toxic effects concerning Sc 
propensity to displace calcium in many biochemical events and its carcinogenic potential have been reported [124,125]. 

4.4.12. Strontium 

Obtained results for Sr content in NG agree well with data reported in old studies [66,90]. The role of Sr in the thyroid 
function and goitrogenesis is unknown. We can’t explain why the Sr level in goitrous tissues is almost twice lower than 
in normal thyroid. Interestingly remark, however, that very similar result of reduced Sr content was indicated in thyroid 
adenoma [61]. 

Our findings show that mass fraction of Ag, Br, Cl, Co, Cu, Fe, Hg, I, Mg, Na, Sc and Sr are significantly different in NG as 
compared to normal thyroid tissues (Table 5). Thus, it is plausible to assume that levels of these ChE in thyroid tissue 
can be used as NG markers. However, this subjects needs in additional studies. 

Limitations 

This study has several limitations. Firstly, analytical techniques employed in this study measure only twenty ChE (Ag, 
Br, Ca, Cl, Co, Cr, Cu, Fe, Hg, I, K, Mg, Mn, Na, Rb, Sb, Sc, Se, Sr, and Zn) mass fractions. Future studies should be directed 
toward using other analytical methods which will extend the list of ChE investigated in normal and goitrous thyroid. 
Secondly, the sample size of NG group was relatively small. It was not allow us to carry out the investigations of chemical 
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element contents in NG group using differentials like gender, histological types of goiter, stage of disease, and dietary 
habits of healthy persons and patients with NG. Lastly, generalization of our results may be limited to Russian 
population. Despite these limitations, this study provides evidence on goiter-specific tissue Ag, Br, Cl, Co, Cu, Fe, Hg, I, 
Mg, Na, Sc, and Sr level alteration and shows the necessity to continue ChE research of NG. 

5. Conclusion 

In this work, ChE measurements were carried out in the tissue samples of normal thyroid and NG of thyroid using three 
non-destructive instrumental analytical methods: EDXRF, INAA-SLR, and INAA-LLR. It was shown that the combination 
of these methods is an adequate analytical tool for the non-destructive determination of Ag, Br, Ca, Cl, Co, Cr, Cu, Fe, Hg, 
I, K, Mg, Mn, Na, Rb, Sb, Sc, Se, Sr, and Zn content in the tissue samples of human thyroid, including needle-biopsy cores. 
It was observed that in goitrous tissues content of Ag, Br, Cl, Co, Cu, Fe, Hg, Mg, Na, and Sc significantly increased whereas 
the levels of I and Sr decrease in a comparison with the normal thyroid tissues. In our opinion, the increase in levels of 
Ag, Br, Cl, Co, Cu, Fe, Hg, Mg, Na, and Sc, as well as the decrease in levels of I and Sr in goitrous tissue might demonstrate 
an involvement of these ChE in etiology and pathogenesis of NG. It was supposed that the changes in levels Ag, Br, Cl, 
Co, Cu, Fe, Hg, I, Mg, Na, Sc and Sr in thyroid tissue can be used as NG markers.  
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