

Cancer immunotherapy associated hypophysitis: Pathophysiology and management

Sanjib Kumar Das and Koushik Sen *

Department of Zoology, Jhargram Raj College, West Bengal, India.

World Journal of Advanced Research and Reviews, 2022, 15(02), 297-303

Publication history: Received on 07 July 2022; revised on 10 August 2022; accepted on 12 August 2022

Article DOI: <https://doi.org/10.30574/wjarr.2022.15.2.0819>

Abstract

Immune checkpoints are small molecules produced by immune cells that play crucial role in maintaining homeostasis of immune system. Targeting the immune checkpoint molecule, specifically, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed death 1 (PD1) with inhibitory monoclonal antibodies has been reported to have antitumor activity. The US Food and Drug Administration (FDA) has been recognized several immune checkpoint inhibitors (ICIs) for the treatment of several types of cancer, mainly two types of ICIs that target CTLA-4 and PD1, have been approved as immunotherapeutic agent for cancer treatment. Autoimmune side effects results from immune checkpoint blockade, termed as immune related adverse events (irAEs) are frequent and usually mild, can include multiple endocrinopathies. The unique characteristic of irAEs is their non-reversibility, with incidence and prevalence expected to be increased in the upcoming years. Immune-related hypophysitis (IRH) is one of the most frequently reported irAEs after thyroid dysfunction. Hypophysitis, specifically associated with anti-CTLA-4 therapy, primary adrenal insufficiency (PAI) and diabetes mellitus are rare irAEs but can be fatal if not diagnosed and treated in early stage. Combinatorial therapy using anti- CTLA-4 and anti-PD1 drug is associated with increasing prevalence of IRH. The exact mechanism behind the development of irAEs remain to be elucidated. Most ICI associated endocrinopathies are manifested within 8-12 weeks after the initiation of ICI therapy. Management of ICI associated hypophysitis requires withdrawal of the ICI therapy, initiation of steroids and finally initiation of hormone replacement therapy and usually includes long-term management and care for controlling the irreversible side effects. In this review, we try to summarize the current scenario regarding the epidemiology, mechanism pathophysiology and management procedure for IRH in cancer patients receiving immunotherapy.

Keywords: Cancer immunotherapy; Immune-related adverse events; Hypophysitis; PD1; CTLA-4

1. Introduction

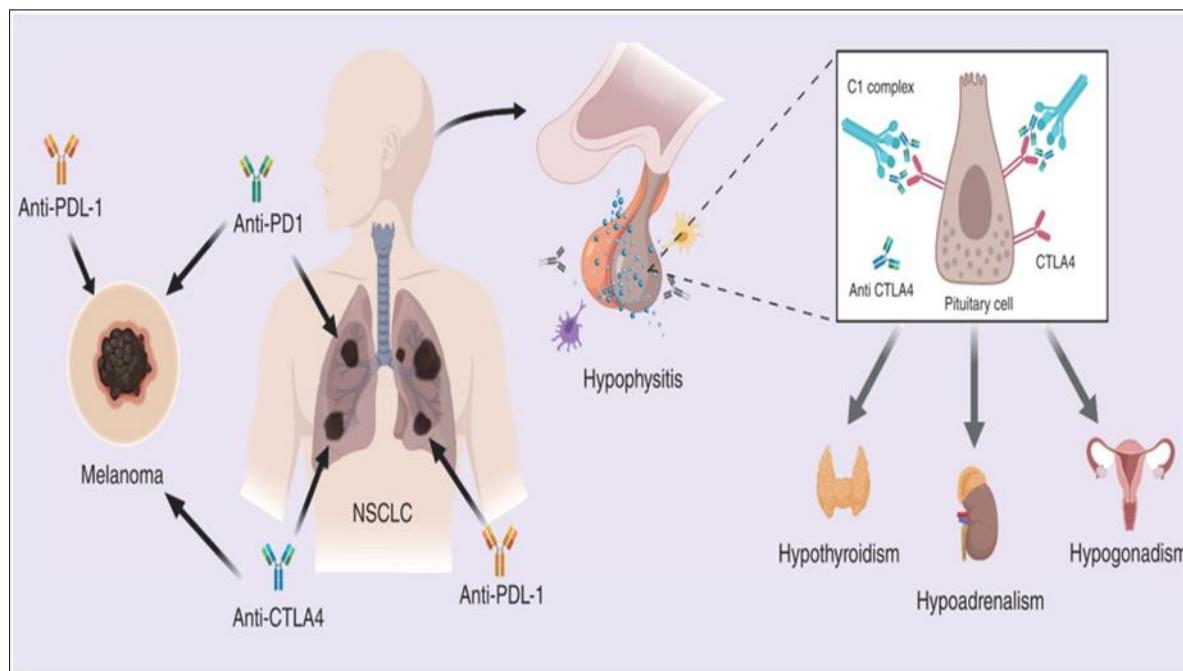
The advent of immunotherapy discloses a novel way to treat a wide verity of malignant disease including several types of cancer such as melanoma, renal cell carcinoma, lung cancer, colorectal, and other cancers [1]. Treatment using immune checkpoint inhibitors (ICIs) to abolish the restriction on the immune cells to initiate antitumor activity, have demonstrated promising results in the field of cancer treatment, especially two ICIs- cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD1) used in cancer treatment exerts effect by blocking the immune checkpoints, unleashing T-cells to fight cancer [2]. ICIs can be used alone or in combination with other checkpoint inhibitors or along with chemotherapeutic drugs. However, immunotherapy using ICIs can trigger onset of immune-related adverse events (irAEs) such as hypophysitis, diabetes mellitus, primary adrenal insufficiency, thyroiditis. Endocrinopathies are not the sole adverse outcome of ICI therapy but can particularly be severe in most of the patients. Therefore, patients must be kept under careful surveillance during ICI treatment [2-4].

* Corresponding author: Koushik Sen

Department of Zoology, Jhargram Raj College, West Bengal, India.

Hypophysis along with associated pituitary dysfunction is observed in patients receiving ICI treatment for cancer. Hypophysitis, a rare clinical condition characterized by a chronic inflammatory infiltration, progressively replaced by fibrotic tissue that alter pituitary gland architecture and causing dysfunction of the gland [5-6]. According to its aetiology, the hypophysitis classified under two broad sub-types- primary hypophysitis and secondary hypophysitis. In primary hypophysitis autoimmune pathogenesis develops without any clear cause and the inflammatory infiltration develops and is restricted to pituitary tissue. Another subtype is secondary hypophysitis, develops when inflammatory disorder is caused to an adjacent or systemic disease with a clearly identified etiological agent or iatrogenic aetiology [5,7]. The development and progression of immune-related hypophysitis (IRH) has been frequently associated with the anti-CTLA-4 and anti- PD1 molecules [8-10]. In clinical practice oncologists frequently use ICIs to treat cancer, as a result, the patients developing IRH become gradually escalated; IRH can also trigger several other endocrine complications, hence requires an early detection, diagnosis and treatment.

1.1. Epidemiology of ICI Associated Hypophysitis


With gradual increase in the use of novel immune targeted therapy for cancer treatment, there has been a rise of immune-mediated systemic adverse events including IRH. Approximately 0-17% of all patients, receiving ICIs, exhibit IRH [3]. IRH is more frequently found in men than women, with a M:F ratio of 4:1 [11]. Since 2011, total 304 cases of IRH have been reported, most of them are outcome of immunotherapy using ipilimumab [12]. In fact, the incidence of IRH varies according to the type of ICIs administered. In patients, receiving anti-CTLA-4 drug, the estimated case of IRH was nearly 5.6% with ipilimumab and 1.8% for tremelimumab whereas with the use of anti-PD1 drugs nivolumab and pembrolizumab, the incidence of IRH is significantly reduced, 0.5% and 1.1% respectively. The highest incidence has been observed with combination therapy, ranging from using 8.8%-10.5 % in patients receiving nivolumab plus ipilimumab or pembrolizumab plus ipilimumab. Only in 1.1% cases, patients treated with anti-PD1 therapy are likely to develop hypophysitis[13].

1.2. Pathophysiology of Hypophysitis

The hypophysis is a prime endocrine gland that is divided into anterior and posterior part, adenohypophysis and neurohypophysis, and whose activity is regulated by hypothalamus. Hypothalamic releasing and inhibitory hormones control the activity of adenohypophysis whereas neural signalling networks from the hypothalamus regulates neurohypophyseal secretions [14]. The underlying mechanism of the development of hypophysitis due to ICI treatment is still poorly understood. Studies on murine model and *in vitro* cell line have demonstrated a potential involvement antibody-dependent cell-mediated cytotoxicity along with complement mediated pathway (Fig-1) for IRH development [3]. Recent research demonstrates that ectopic CTLA-4 antigens are expressed in the cells of hypophysis during immunotherapy. Anti-CTLA-4 antibodies bind with the ectopic ligand in the pituitary inducing type II hypersensitivity reaction which ultimately causes constitutive activation of classical complement pathway causing tissue damage and initiation of IRH development [15,16].

CTLA-4, a widely expressed checkpoint molecule in various types of immune cells including helper and cytotoxic T cells. CTLA-4 expression is also found in pituitary adenomas and normal pituitary tissue [4,17]. The anti CTLA-4 antibodies, such as ipilimumab and tremelimumab restrict mononuclear cells activation, so, their use as immunotherapeutic drug results in the aggregation and deposition of complement (C1q) proteins in pituitary cells and antibody dependent cell-mediated cytotoxicity. Moreover, the presence of serum antibodies has been observed against thyrotropic, gonadotropic and corticotrophic cells in patients who develop hypophysitis following the use of ipilimumab [15]. The synthesis and secretion of anti-pituitary antibodies suggests that anti-CTLA-4 antibodies administration as a therapeutic agent to cancer patients with high- pituitary expression of CTLA-4 can promote hypophysitis mediated through T-cell dependent (type IV) and antibody-dependent (type II) anti-CTLA- 4 immune mechanisms [11]. This immune-inflammatory reaction leads to the development of hypophysitis and irAEs to downstream target organs. [18,19]

The occurrence of IRH following the use of anti-PD1/PD-L1 antibodies is significantly lower compared to than that of reported following the use of anti-CTLA-4 antibodies [20]. The explanation regarding this differential outcome may be the fact that there is no ectopic PD1 or PD-L1 expression found in normal hypophysitis tissue [4,21]. Moreover, PD1/PD-L1 mainly regulates the inflammatory reactions both in the tumour micro-environment and in peripheral tissues. Therefore, the blockade of this pathway could merely be influencing only the peripheral scenarios [4].

Figure 1 Clinical Pathophysiology of Immune-related hypophysitis [16]

1.3. Clinical Manifestation

Table 1 Toxicity Grading System of ICI Induced Hypophysitis as Defined by The National Cancer Institute, CTCAE [2]

	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5
Hypophysitis	Asymptomatic or mild symptoms; clinical or diagnostic observations only; intervention not indicated	Moderate, minimal, or non-invasive intervention, indicated; limiting age-appropriate, instrumental activities of daily living	Severe or medically significant but not immediately life-threatening; hospitalization or prolongation of existing hospitalization indicated; limiting self-care	Life threatening consequences; urgent intervention indicated	Death

The manifestation of IRH can be asymptomatic or symptomatic and based on types of ICI used for immunotherapy, however, IRH is rare and only diagnosed when severe [22]. The clinical symptoms raised in between 6 to 12 weeks after the initiation of anti-CTLA-4 therapy. The most common symptoms of IRH are headache and fatigue; additional symptoms may include confusion, memory loss, hallucinations, anorexia, nausea, dizziness, reduced libido, cold intolerance, hot flashes, labile mood and weight loss; visual disturbances due to optic chiasm impingement are rare [9,10]. The presence of these symptoms needs further clinical investigations such as radiographic imaging for exclusion of cerebrovascular disease along with cerebral or leptomeningeal metastases. Patients developing IRH frequently shows myriad of symptoms associated with hormone deficiency which can be detected through clinical manifestation or by blood parameter measurement [14]. Among them central hypothyroidism and primary adrenal insufficiency (PAI) are most common in IRH. The main feature of central hypothyroidism is low or sub-normal free T₄ along with normal or low thyroid stimulating hormone (TSH) [23]. Cancer Patients treated with ICIs develop PAI which may be fatal if treatment with corticosteroids is not initiated promptly after detection. Symptoms of PAI include hypotension, electrolyte imbalance, and dehydration [24,25]. PAI is characterized by reduced or sub-normal level of adrenocorticotropic hormone (ACTH) and cortisol. Insufficient cortisol hike in response to cosyntropin administration confirms the PAI [24]. These patients require glucocorticoid therapy to keep their symptoms under control. Another common adverse outcome of IRH is hypogonadotropic hypogonadism manifested through reduced or inappropriately normal level of follicle stimulating hormone (FSH) and leutinizing hormone (LH). In men androgen levels are low

whereas in reproductive women reduced level of estradiol is observed; in case of post reproductive aged women subnormal level of FSH and LH indicating development of hypogonadotropic hypogonadism [2,26]. The National Cancer Institute of the United States suggested a classification for IRH, based on its severity; the classification (Table-1) goes from grade 1 for asymptomatic or mild symptoms, to grade 5 which causes death [27].

1.4. Diagnosis & Clinical Approach

The cancer patients on ICIs therapy, if hypophysitis is suspected, appropriate blood parameter analysis along with brain MRI represents the gold standard for the detection. Circulating levels of TSH, FSH, LH, ACTH, prolactin, oxytocin, testosterone and cortisol measurement should also be performed. Concerning imaging studies, observation of pituitary enlargement is a specific gold standard of ICI induced hypophysitis; diffused, mild to moderate level of pituitary enlargement usually reported, sometimes thickening of pituitary stalk results in impingement of the optic chiasm [14,28,29]. Pituitary enlargement may precede the clinical diagnosis of hypophysitis by several weeks. Based on this reporting, brain MRI is recommended for patients receiving ICIs therapy compared with previous studies to monitor the changes in pituitary size and function. In ICI associated hypophysitis pituitary enlargement resolves in 7-30 days nearly in all cases [2,17]. MRI, as a tool for identifying hypophysitis, also allows the possibility of ruling out new metastatic event, cerebrovascular events of leptomeningeal disease [5,9,30]. MRI also used as a powerful diagnostic technique to differentiate central pituitary dysfunction from other irAEs such as autoimmune thyroiditis, PAI, pituitary macroadenomas [11,29].

1.5. Management

Patients suffering from IRH must be counselled regarding the signs and symptoms of hypophysitis, because between two consecutive treatment visits, patient may require prompt management [2]. After the detection of IRH in patients on ICIs therapy, glucocorticoid and thyroid hormone replacement therapy is initiated promptly along with assessment of serum sodium concentration. If hypogonadism is also persisted androgen replacement therapy should be started. A number of patients suffering from IRH partly recover the anterior pituitary function. Thyroidal and gonadal axis recovery has been observed more frequently than adrenal recovery [31-33]. The time duration for recovery is not well understood, mainly due to variation in patient follow up, laboratory diagnosis and attempts to wean hormone therapy.

High doses of steroids have been prescribed for the patient with critical condition, associated with hypophysitis along with symptoms of low serum sodium level, severe headache and visual impairment. In this clinical status, once the hypophysitis is clearly diagnosed, ICI therapy must be aborted and management procedure should be initiated promptly [7,9]. In case of severe effect or hypoadrenalinism, the European Society of Medical Oncology recommend the use of methylprednisolone (1–2 mg/kg per day) for 3–5 days, followed by oral administration of prednisone (1–2 mg/kg), with gradual tapering in 4 weeks [13,17]. Dexamethasone (4 mg in every 6 hour) for 7 days, followed by gradual titration up to 0.5 mg/day and after that switching to hydrocortisone, may be used as an alternative option. Recent guidelines by American Society of Medical Oncologist, recommend use of high-dose steroids such as prednisone or its equivalent, (1–2 mg/kg) for grade 3–4 hypophysitis patients [34-36].

For stable patients, suffering from grade 1–2, European Society of Medical Oncology suggests the administration of low dose oral steroids (1–2 mg/kg) in the case of grade 2 toxicity; whereas for grade 1 toxicity, only the respective hormone replacement therapy is recommended [9, 16].

For certain patients, in whom refractory or recurrent immunotoxicity is observed, nonsteroidal immunosuppressants such as azathioprine, methotrexate and cyclosporin can be successfully used after cessation of immunotherapy. Radiotherapy and radiosurgery to remove the affected region of pituitary has been reported in some patients of primary autoimmune hypophysitis [37,38].

The resumption of ICIs therapy after immunotoxicity represents a challenge to the clinicians, and should be considered after proper assessment on customized individual basis. Patients must be monitored at strict interval to diagnose the incidence of relapses, complications, and current status of the disease. The decision to restart ICI therapy is not always clear, resumption of immunotherapy often require optimal patient management [14,39,40].

2. Conclusion

Better understanding of immune checkpoint regulation accelerates rapid progression in the treatment of cancer and ongoing research indicates that ICIs will likely to have wide role in treating variety of malignancies. In near future, the number of patients with IRH and other irAEs will increase rapidly. IRH, though rare, is one of the main indications for ICI therapy interruption. The incidence of IRH is currently increasing which may lead to severe clinical consequences

such as irAEs. Therefore, the treatment responses and long-term survival of patients receiving ICIs is a matter of concern and requires prompt recognition and appropriate treatment of IRH. As the aetiology of this complication is still remain beyond complete understanding, the accurate diagnosis requires high index of clinical suspicion, imaging assessment, a multidisciplinary diagnosis approach and a customized individualized hormone replacement therapy. Therefore, oncologists, endocrinologists and primary care providers for these patients should be aware of clinical manifestations, diagnosis, and management. Effective communication and coordination between oncologists and endocrinologists can facilitate optimal management and outcomes for patients -who develop ICI-associated endocrinopathies. Moreover, further research is required to strengthen our understanding in this field for better management of irAEs. Additional studies are required for better clarification of the mechanisms behind the development of irAEs, particularly for IRH. Hence it is greatly important to perform more research in this field to explain the basic mechanism for the betterment of individualized clinical guidelines which will help the clinicians working in this field to make more specific decision and better living the survival of the patients.

Compliance with ethical standards

Acknowledgments

The authors are grateful to Prof. Kousik Pramanick (Integrative Biology Research Unit, Dept. of Life Sciences, Presidency University, West Bengal, India) for his valuable suggestions.

Disclosure of conflict of interest

The authors declare no conflict of interest.

Funding

This review work did not receive any funding.

References

- [1] Gedye C, Van der Westhuizen A, John T. Checkpoint immunotherapy for cancer: superior survival, unaccustomed toxicities. *Internal medicine journal*. 2015, 45(7):696-701.
- [2] Chang LS, Barroso-Sousa R, Tolaney SM, Hodi FS, Kaiser UB, Min L. Endocrine toxicity of cancer immunotherapy targeting immune checkpoints. *Endocrine reviews*. 2019, 40(1):17-65.
- [3] Joshi MN, Whitelaw BC, Palomar MT, Wu Y, Carroll PV. Immune checkpoint inhibitor-related hypophysitis and endocrine dysfunction: Clinical review. *Clinical endocrinology*. 2016, 85(3):331-339.
- [4] González-Rodríguez E, Rodríguez-Abreu D, Spanish Group for Cancer Immuno-Biotherapy (GETICA). Immune checkpoint inhibitors: review and management of endocrine adverse events. *The oncologist*. 2016, 21(7):804-816.
- [5] Guaraldi F, Giordano R, Grottoli S, Ghizzoni L, Arvat E, Ghigo E. Pituitary autoimmunity. *Endocrine Immunology*. 2017, 48:48-68.
- [6] Glezer A, Paraiba DB, Bronstein MD. Rare sellar lesions. *Endocrinology and metabolism clinics of North America*. 2008 Mar 1, 37(1):195-211.
- [7] Torino F, Barnabei A, De Vecchis L, Salvatori R, Corsello SM. Hypophysitis induced by monoclonal antibodies to cytotoxic T lymphocyte antigen 4: challenges from a new cause of a rare disease. *The Oncologist*. 2012, 17(4):525-35.
- [8] Kwak JJ, Tirumani SH, Van den Abbeele AD, Koo PJ, Jacene HA. Cancer immunotherapy: imaging assessment of novel treatment response patterns and immune-related adverse events. *Radiographics*. 2015, 35(2):424-37.
- [9] Haanen JB, Carbonnel F, Robert C, Kerr KM, Peters S, Larkin J, Jordan K. Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. *Annals of oncology*. 2017, 1;28(4): 119-42.
- [10] Cukier P, Santini FC, Scaranti M, Hoff AO. Endocrine side effects of cancer immunotherapy. *Endocrine-related cancer*. 2017, 24(12):33-47.

- [11] Caturegli P, Di Dalmazi G, Lombardi M, Grosso F, Larman HB, Larman T, Taverna G, Cosottini M, Lupi I. Hypophysitis secondary to cytotoxic T-lymphocyte-associated protein 4 blockade: insights into pathogenesis from an autopsy series. *The American journal of pathology*. 2016, 186(12):3225-35.
- [12] Tan MH, Iyengar R, Mizokami-Stout K, Yentz S, MacEachern MP, Shen LY, Redman B, Gianchandani R. Spectrum of immune checkpoint inhibitors-induced endocrinopathies in cancer patients: a scoping review of case reports. *Clinical diabetes and endocrinology*. 2019, 5(1):1-21.
- [13] De Filette J, Andreescu CE, Cools F, Bravenboer B, Velkeniers B. A systematic review and meta-analysis of endocrine-related adverse events associated with immune checkpoint inhibitors. *Hormone and Metabolic Research*. 2019, 51(03):145-56.
- [14] Solinas C, Porcu M, De Silva P, Musi M, Aspeslagh S, Scartozzi M, Willard-Gallo K, Mariotti S, Saba L. Cancer immunotherapy-associated hypophysitis. In *Seminars in oncology* 2018 Jun 1 (Vol. 45, No. 3, pp. 181-186). WB Saunders.
- [15] Iwama S, De Remigis A, Callahan MK, Slovin SF, Wolchok JD, Caturegli P. Pituitary expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. *Science translational medicine*. 2014, 6(230):230ra45-.
- [16] Castillero F, Castillo-Fernández O, Jiménez-Jiménez G, Fallas-Ramírez J, Peralta-Álvarez MP, Arrieta O. Cancer immunotherapy-associated hypophysitis. *Future Oncology*. 2019, 15(27):3159-69.
- [17] Faje A. Immunotherapy and hypophysitis: clinical presentation, treatment, and biologic insights. *Pituitary*. 2016;19(1):82-92.
- [18] Torino, F., Barnabei, A., Paragliola, R.M., Marchetti, P., Salvatori, R., & Corsello, S.M. Endocrine side-effects of anti-cancer drugs: mAbs and pituitary dysfunction: clinical evidence and pathogenic hypotheses. *European Journal of Endocrinology*. 2013, 169(6):153-164
- [19] Mahzari, M., Liu, D., Arnaout, A. and Lochnan, H., 2015. Immune checkpoint inhibitor therapy associated hypophysitis. *Clinical Medicine Insights: Endocrinology and Diabetes*, 8, pp.CMED-S22469.
- [20] Corsello SM, Barnabei A, Marchetti P, De Vecchis L, Salvatori R, Torino F. Endocrine side effects induced by immune checkpoint inhibitors. *The Journal of Clinical Endocrinology & Metabolism*. 2013, 98(4):1361-75.
- [21] Byun DJ, Wolchok JD, Rosenberg LM, Girotra M. Cancer immunotherapy—immune checkpoint blockade and associated endocrinopathies. *Nature Reviews Endocrinology*. 2017, 13(4):195-207.
- [22] Roberts K, Culleton V, Lwin Z, O'Byrne K, Hughes BG. Immune checkpoint inhibitors: navigating a new paradigm of treatment toxicities. *Asia-Pacific Journal of Clinical Oncology*. 2017, 13(4):277-88.
- [23] Fleseriu M, Hashim IA, Karavitaki N, Melmed S, Murad MH, Salvatori R, Samuels MH. Hormonal replacement in hypopituitarism in adults: an endocrine society clinical practice guideline. *The Journal of Clinical Endocrinology & Metabolism*. 2016 1, 101(11):3888-921.
- [24] Bancos I, Hahner S, Tomlinson J, Arlt W. Diagnosis and management of adrenal insufficiency. *The lancet Diabetes & endocrinology*. 2015 Mar 1, 3(3):216-26.
- [25] Puar TH, Stikkelbroeck NM, Smans LC, Zelissen PM, Hermus AR. Adrenal crisis: still a deadly event in the 21st century. *The American journal of medicine*. 2016 1, 129(3):339-e1.
- [26] Bhasin S, Brito JP, Cunningham GR, Hayes FJ, Hodis HN, Matsumoto AM, Snyder PJ, Swerdloff RS, Wu FC, Yialamas MA. Testosterone therapy in men with hypogonadism: an Endocrine Society clinical practice guideline. *The Journal of Clinical Endocrinology & Metabolism*. 2018, 103(5):1715-44.
- [27] Lomax AJ, McNeil C. Acute management of autoimmune toxicity in cancer patients on immunotherapy: common toxicities and the approach for the emergency physician. *Emergency Medicine Australasia*. 2017, 29(2):245-51.
- [28] Beer L, Hochmair M, Prosch H. Pitfalls in the radiological response assessment of immunotherapy. *Memo-Magazine of European Medical Oncology*. 2018, 11(2):138-43.
- [29] Widmann G, Nguyen VA, Plaickner J, Jaschke W. Imaging features of toxicities by immune checkpoint inhibitors in cancer therapy. *Current radiology reports*. 2017, 5(11):1-1.
- [30] Araujo PB, Coelho MC, Arruda M, Gadelha MR, Neto LV. Ipilimumab-induced hypophysitis: review of the literature. *Journal of endocrinological investigation*. 2015, 38(11):1159-66.

- [31] Faje AT, Sullivan R, Lawrence D, Tritos NA, Fadden R, Klibanski A, Nachtigall L. Ipilimumab-induced hypophysitis: a detailed longitudinal analysis in a large cohort of patients with metastatic melanoma. *The Journal of Clinical Endocrinology & Metabolism*. 2014;199(11):4078-85.
- [32] Ryder M, Callahan M, Postow MA, Wolchok J, Fagin JA. Endocrine-related adverse events following ipilimumab in patients with advanced melanoma: a comprehensive retrospective review from a single institution. *Endocrine-related cancer*. 2014 Apr 1;21(2):371-81.
- [33] Downey SG, Klapper JA, Smith FO, Yang JC, Sherry RM, Royal RE, Kammula US, Hughes MS, Allen TE, Levy CL, Yellin M. Prognostic factors related to clinical response in patients with metastatic melanoma treated by CTL-associated antigen-4 blockade. *Clinical Cancer Research*. 2007 Nov 15;13(22):6681-8.
- [34] Brahmer JR, Lacchetti C, Schneider BJ, Atkins MB, Brassil KJ, Caterino JM, Chau I, Ernstoff MS, Gardner JM, Ginev P, Hallmeyer S. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology Clinical Practice Guideline. *Journal of clinical oncology: official journal of the American Society of Clinical Oncology*. 2018 Jun 10;36(17):1714.
- [35] Brilli L, Danielli R, Cioli C, Calabro L, Di Giacomo AM, Cerase A, Paffetti P, Sestini F, Porcelli B, Maio M, Pacini F. Prevalence of hypophysitis in a cohort of patients with metastatic melanoma and prostate cancer treated with ipilimumab. *Endocrine*. 2017 Dec;58(3):535-41.
- [36] Faje AT, Lawrence D, Flaherty K, Freedman C, Fadden R, Rubin K, Cohen J, Sullivan RJ. High-dose glucocorticoids for the treatment of ipilimumab-induced hypophysitis is associated with reduced survival in patients with melanoma. *Cancer*. 2018 Sep 15;124(18):3706-14.
- [37] Curtò L, Torre ML, Cotta OR, Losa M, Terreni MR, Santarpia L, Trimarchi F, Cannavò S. Lymphocytic hypophysitis: differential diagnosis and effects of high-dose pulse steroids, followed by azathioprine, on the pituitary mass and endocrine abnormalities—report of a case and literature review. *TheScientificWorldJOURNAL*. 2010 Jan 21;10:126-34.
- [38] Honegger J, Buchfelder M, Schlaffer S, Droste M, Werner S, Strasburger C, Störmann S, Schopohl J, Kacheva S, Deutschbein T, Stalla G. Treatment of primary hypophysitis in Germany. *The Journal of Clinical Endocrinology & Metabolism*. 2015 Sep 1;100(9):3460-3469.
- [39] Sznol M, Postow MA, Davies MJ, Pavlick AC, Plimack ER, Shaheen M, Veloski C, Robert C. Endocrine-related adverse events associated with immune checkpoint blockade and expert insights on their management. *Cancer treatment reviews*. 2017 Jul 1;58:70-76.
- [40] Illouz F, Briet C, Cloix L, Le Corre Y, Baize N, Urban T, Martin L, Rodien P. Endocrine toxicity of immune checkpoint inhibitors: essential crosstalk between endocrinologists and oncologists. *Cancer Medicine*. 2017 Aug;6(8):1923-9.