

Continuous EEG of memories of Near-death and mystical experiences: Preliminary research

Calixto Machado ^{1,*}, Andrew Newberg ², Yanin Machado ¹, Mauricio Chinchilla ¹, Ramiro Salas ^{3,4}, Deb Kleser ⁵ and Robert Hesse ^{5,6,*}

¹ Institute of Neurology and Neurosurgery, Havana, Cuba.

² Thomas Jefferson University, Villanova, Pennsylvania, US.

³ Baylor College of Medicine, Houston, Texas US.

⁴ Michael E DeBakey VA Medical Center, Houston, Texas, US.

⁵ University of St. Thomas, Houston, Texas, US.

⁶ Contemplative Network, Houston, Texas, US.

World Journal of Advanced Research and Reviews, 2022, 16(02), 325-334

Publication history: Received on 01 October 2022; revised on 04 November 2022; accepted on 07 November 2022

Article DOI: <https://doi.org/10.30574/wjarr.2022.16.2.1167>

Abstract

We recently recorded, processed, and published brain activity by quantitative electroencephalography (QEEG) and quantitative electroencephalography (QEEGt), comparing separate subjects remembering their near-death experience (NDE) and mystical experience. Our studies refer to a mystical experience as a spiritual contemplative experience (SCE). We found neural and Greyson Scale (GS) correlations between them. This study is a real-time enhancement of that study using the emerging technology of continuous EEG monitoring (CEEG), which intensive care unit (ICU) professionals use to identify malignant EEG patterns quickly and provide care effectively. EEG monitoring encompasses a wide range of technical and clinical issues in successfully monitoring critically ill patients to detect significant changes in cerebral function and prevent serious neuronal injury over time. Because the brain undergoes continuous and dynamic changes, CEEG was considered an important method for real-time monitoring of functional brain changes while remembering near-death experiences (NDE) and spiritual contemplative experience (SCE). The CEEG envelope showed an incremental amplitude coinciding with NDE and SCE remembering the time, but an increase of amplitude was greater for SCE. CEEG also demonstrated a greater amplitude in frontal lobes for SCE. Statistical increments of absolute power for alpha and gamma bands were demonstrated during both NDE and SCE. We conclude that CEEG is a useful method for continuously assessing dynamic changes while remembering NDE and SCE.

Keywords: Near-death experiences; Spiritual contemplative experiences (SCE); Mystical experiences; Continuous EEG monitoring (CEEG); Grayson Scale; intensive care unit (ICU)

1. Introduction

Over the centuries, the wisdom literature in most faith traditions has reported SCEs and NDEs, with these altered states of consciousness having similar attributes that have been scarcely studied by neuroscience.¹⁻⁹

Several reports indicated that NDE and SCE are associated with marked thermodynamic and neuroelectric changes in brain regions involved in positive emotions, visual mental imagery, attention, or spiritual experiences. The temporoparietal junction is the possible anatomic substrate for out-of-body experience (OBE). Hence several authors have reported repetitively induced OBE by subcortical stimulation near the left temporoparietal junction during awake

* Corresponding author: Robert Hesse
University of St. Thomas, Houston, Texas, US.

craniotomy. Diffusion tensor imaging tractography implicated the posterior thalamic radiation as a possible substrate for autoscopic phenomena.⁹⁻¹¹

We recently published an article in which we recorded and processed brain activity by QEEGt methodology. There was a clear correlation between brain activation in delta, alpha, and gamma bands and calculated frontal lobe activation for both NDE and SCE subjects. Although there was a greater activation for the SCE subjects.¹²

The emerging technology of CEEG in intensive care units allows practitioners to identify malignant EEG patterns quickly and provide more effective care. *EEG monitoring* encompasses a wide range of technical and clinical issues in successfully monitoring critically ill patients to detect significant changes in cerebral function and prevent serious neuronal injury. CEEG is a rapidly evolving technology, and this statement addresses only current consensus-based recommendations for CEEG.¹³⁻²⁹

Hence, as the brain undergoes continuous and dynamic changes, CEEG should be an important method for real-time monitoring of the brain's functional changes during remembering NDE and SCE.

Objective

Compare the continuous real-time neural correlates of subjects who are in the process of remembering a prior NDE or SCE using CEEG.

2. Material and methods

We chose a protocol to assess by CEEG the memories of two groups who previously had a NDE and separately a SCE. CEEG allows continuous monitoring of bioelectrical activity, with a high temporal resolution, during NDE and SCE remembering. We used the CEEG system for neuromonitoring in intensive care units developed in Cuba (Neuronic S. A.)

2.1. Sample Groups

Two groups were studied, each having five subjects from 19 to 65 years of age, both male and female, paired in age and gender. The NDE group was selected from cases who had suffered a cardiac arrest (C-AR) inside the ICU. The SCE group was selected from subjects who described having a SCE during their practice of Centering Prayer (CP), an interdenominational Christian form of prayer.

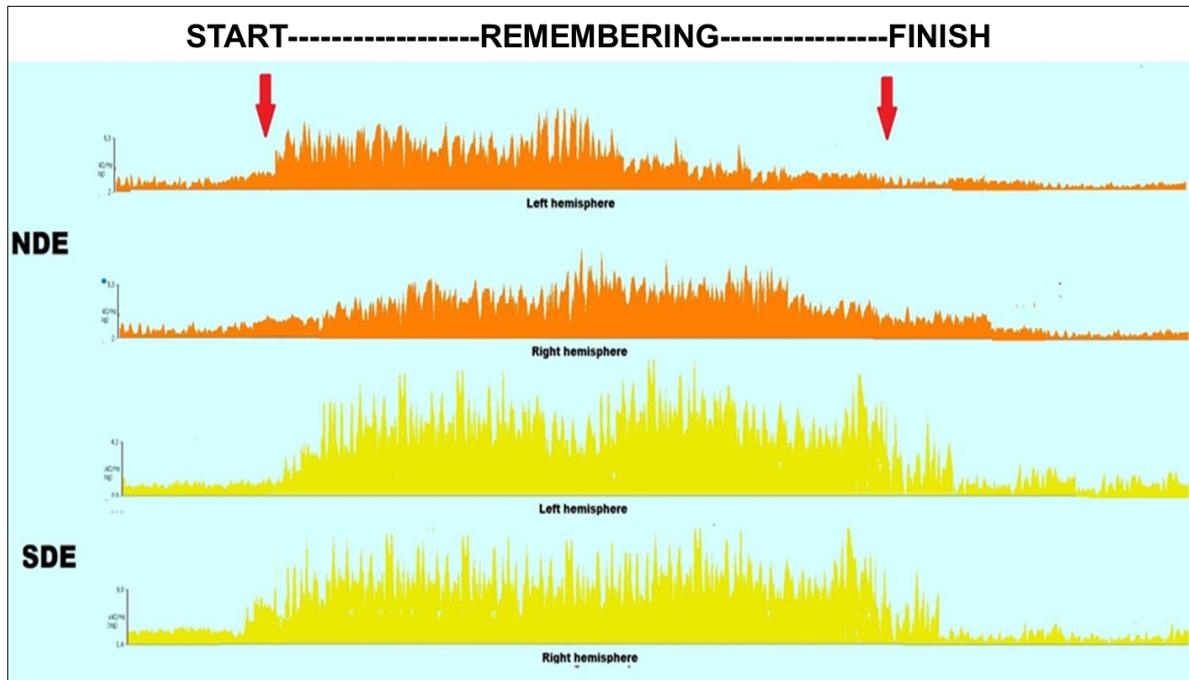
All subjects, both NDE and SCE, had neurological examinations, and the Grayson Scale (GS) applied⁴ was used as an objective measure of a valid NDE and SCE. The subjects who did not describe a NDE or SCE using the GS were excluded from the study.

2.2. Experimental Design

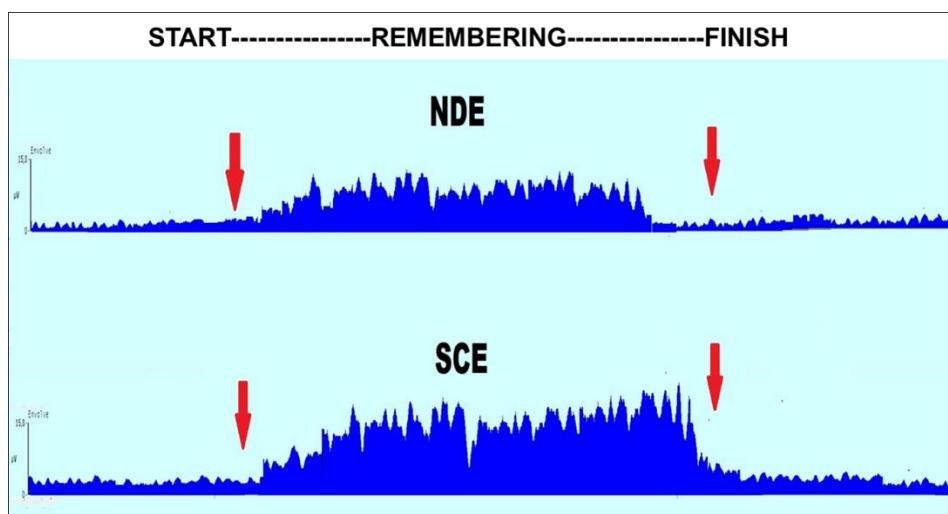
Every subject was studied with both CEEG during remembering NDE and SCE. CEEG was assessed during 7 minutes of basal recording and 7 minutes of remembering their NDE and SCE.

2.3. CEEG Assessment^{23-25, 30-33}

Subjects were studied inside our laboratory with controlled temperature from 24 to 26° Celsius, noise attenuation, and dimmed lights. The CEEG was recorded from 19 standard locations over the scalp according to the 10-20 system: Fp1, Fp2, F3, F4, F7, F8, T3, T4, C3, C4, P3, P4, T5, T6, O1, O2, Fz, Cz, and Pz. After carefully cleaning the skin, discoidal EEG tin electrodes were fixed using a conductor paste and connected to the input box of the digital Continuous EEG Monitoring system (Neuronic, SA). Monopolar leads were recorded using linked ears as a reference. Technical parameters for EEG were: gain 20,000; pass-band filters 0.1 - 70 Hz; "notch" filter at 60 Hz; noise level of 2 μ V (root mean squared); sampling frequency 200 Hz; and electrode-skin impedance never higher than 5 K Ω . A bipolar chest electrocardiogram (ECG) lead was recorded with 0.5 to 30 Hz EEG filters for monitoring purposes.


CEEG processing was performed by using the CEEG system for neuromonitoring in intensive care units developed in Cuba (Neuronic S. A.)

2.4. Ethical Issues


Written informed consent was obtained from each subject with a form approved by IRB of the Institute of Neurology and Neurosurgery, Havana, Cuba.

3. Results

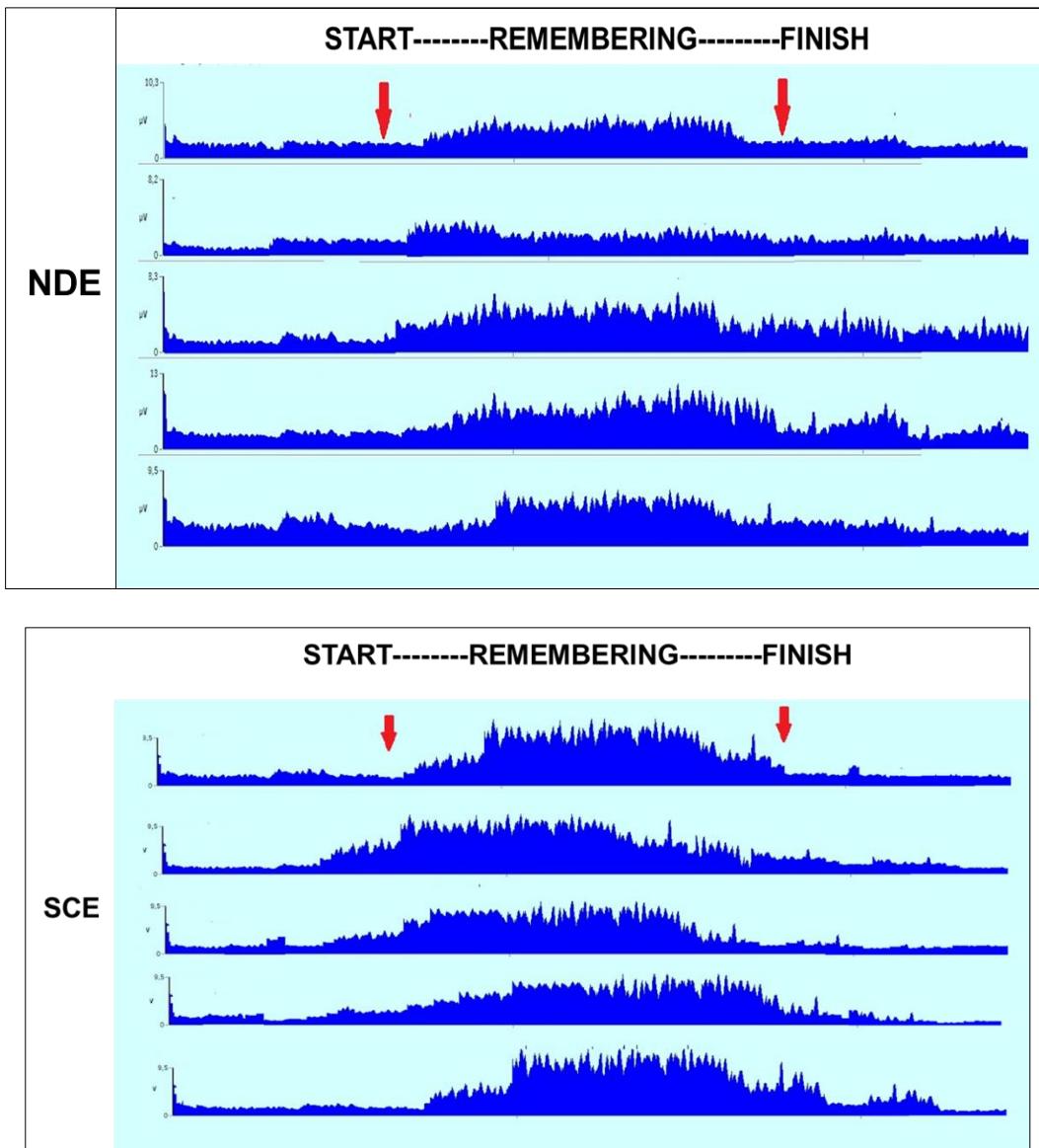

The following Figures 1-3 show the CEEG relative incremental amplitudes coinciding with remembering NDE and SCE, with red arrows indicating the start and finish of remembering over seven minutes. The total amplitude was always greater for SCE. Figure 1 shows the CEEG leads separately from the left and right hemispheres as a grand average over all subjects. Figure 2 shows the CEEG leads as a grand average over both hemispheres and all subjects. Figure 3 shows the CEEG leads as a grand average over both hemispheres but separately for each of the 10 subjects.

Figure 1 CEEG Grand Average of All Subjects for Separate Hemispheres - Plot

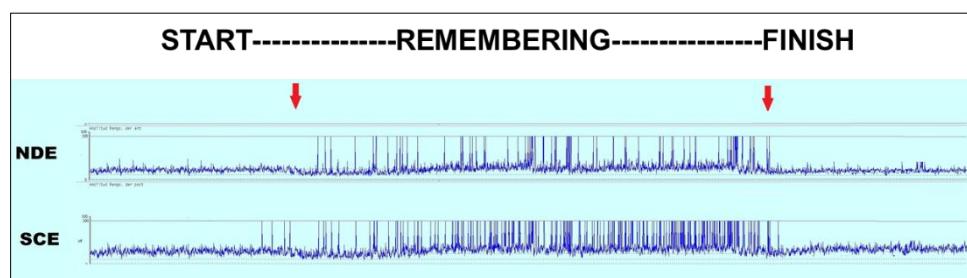


Figure 2 CEEG Grand Average of Both Hemispheres and All Subjects - Plot

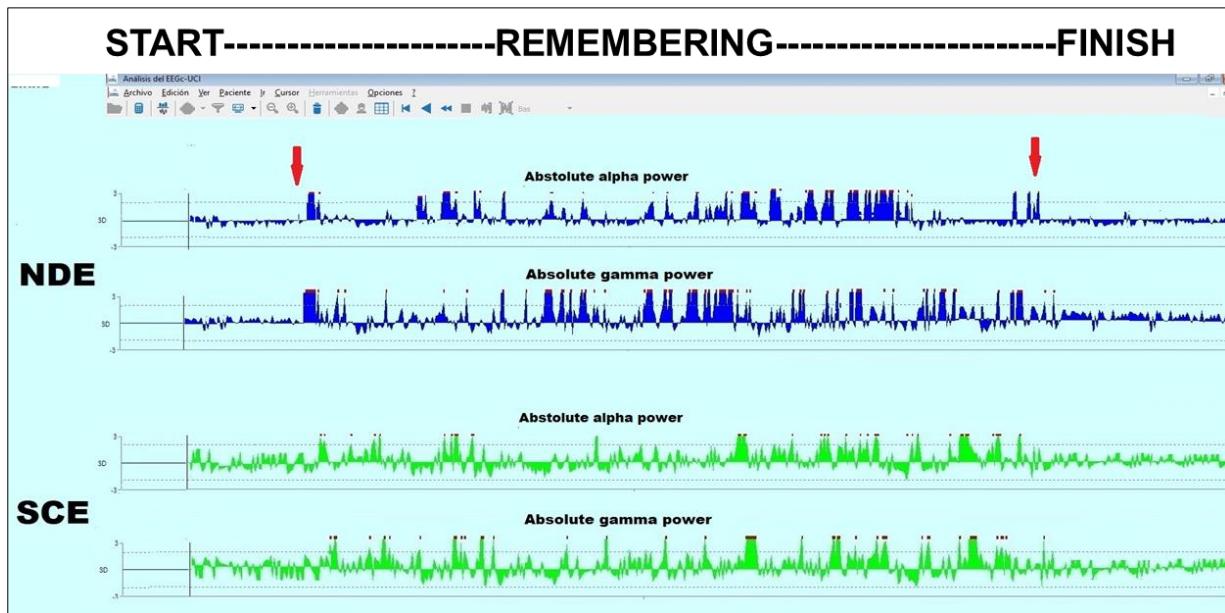


Figure 3 CEEG Grand Average of Both Hemispheres for Separate Subjects – Plot

Figures 4-5 show CEEG integrated amplitude assessed over only the EEG frontal leads with red arrows indicating the start and finish of remembering over seven minutes. Figure 4 shows the CEEG frontal leads as a grand average over both hemispheres and all subjects. Figure 5 shows the CEEG absolute delta and gamma wavelengths as a grand average of frontal leads for both hemispheres and all subjects. Discontinuous lines show a ± 3 standard deviations (SD) with brown points indicating statistically significant values compared to the basal record.

Figure 4 CEEG Frontal Leads: Grand Average of Both Hemispheres & All Subjects – Plot

Figure 5 CEEG Alpha & Gamma: Grand Average of Both Hemispheres & All Subjects – Plot

4. Discussion

4.1. CEEG in ICU

Neuronic CEEG-UCI has the necessary options for the detailed and specific analysis of neurological monitoring studies, including:

- Detection of artifacts according to different established criteria.
- Calculating measurements on the EEG based on time domain: Integrated Amplitude, Amplitude Range, Envelope, and Suppressions.
- Calculating measurements on the EEG based on the frequency domain: Frequency Spectrum, Spectral Edge Frequency, Wide Band, Relative Alpha Variability, Asymmetry Index, and Brain Symmetry Index.
- ECG analysis includes automatic detection of bradycardia, tachycardia, arrhythmia, asystole, and heart rate variability.
- All the results are presented in the form of graphics on predefined screens and presentations, which allows a comparative analysis of the various parameters recorded, the calculations performed, and the events detected. The presentations have been defined using a graphical editor specially designed for the application, allowing users to create their presentations.
- Some results can be compared with limit values so that if they are exceeded, an alarm is activated and displayed on the screen.
- A wide range of options is offered to facilitate the review of the registry: changing the page one by one or automatically, increasing or decreasing the sensitivity of the channels, and increasing or decreasing the speed of the registry.
- One or two cursors are presented for measuring all the results shown on the screen.
- Neuronic EEGc-ICU User Manual / EEGc-ICU Analysis
- It allows making a report with the result of all the automatic information calculated and the visual inspection made by the user. Depending on the type of document you want to obtain, you can use Microsoft Word, OpenOffice Writer, LibreOffice Writer, or WordPad. Results were tabulated, and graphics were created to achieve a better analysis and presentation of this study—the StatSoft, Inc. Data Analysis Software System (STATISTICA) 2020 version 8.0. (ref. www.statsoft.com) was used for all analytical processing.

4.2. CEEG for NDE & SCE

We found that CEEG assessment showed increments of amplitude coinciding with NDE and SCE remembering period, although the amplitude increase was greater for SCE. The increment was also greater in the Gamma, compared to the

Alpha band. This method also showed a greater CEEG amplitude for SCE when frontal leads of both hemispheres were considered for the assessment.

Some people who had survived a life-threatening crisis report an extraordinary NDE. NDEs are reported more frequently because of improved survival rates resulting from modern resuscitation techniques. The content of NDEs and their effects on patients seem similar worldwide, across all cultures and times. The subjective nature and absence of a frame of reference for NDEs lead to individual, cultural, and religious factors, which determine the vocabulary used to describe and interpret the experiences. NDEs are reported in many circumstances: cardiac arrest in myocardial infarction, shock, electrocution, coma resulting from traumatic brain damage, intracerebral hemorrhage or cerebral infarction, near-drowning or asphyxia, and apnea.³⁴⁻³⁹ Similar to NDEs, some experiences occur during the terminal phase of illness and are called deathbed vision.^{37,40-44} Although these results cannot simply be correlated with human experiments, it suggests the brain's remaining activity may explain the NDE.^{45,46}

As mentioned earlier, we have found, from anecdotal observations, that occasionally, when teaching CP to students, they would relive their previous NDE experience during their CP. Hence, it became clear that the four attributes described by Moody^{47,48} to NDEs also applied to SCEs. Those are *paranormal* out-of-body, *cognitive* timelessness; *affective* peacefulness; and *transcendent* divine. This was the case even when CP practitioners never had a previous NDE. Our neural correlate research seems to confirm this anecdotal observation.

The fact that there is increased activation in the scans of SCE subjects is understandable since they remember an incident not connected with an impaired state of consciousness or suffering near death, compared to the scans of the NDE subjects. Moreover, SCE is more likely to occur with CP training, and the increments within the Gamma band, and ever greater in frontal lobes, indicate marked cognitive processing.⁴⁹⁻⁵⁵

Some researchers observed a surge of brain activity just moments before death. This raises the fascinating possibility that they have identified the neural basis for near-death experiences. However, that research on death-related brain activity was in rats, not humans. It is easier to study the death process in animals than in humans. The exact moment of death was identified as the last regular heartbeat. EEG was recorded during a normal waking phase, anesthesia, and after cardiac arrest, from the right and left frontal (RF/LF), parietal (RP/LP), and occipital (RO/LO) cortex.^{56,57}

These results might explain the brain activation we found in our subjects during remembering NDEs. To explain a greater activation during remembering SCEs, we can consider neuropsychological effects during CP meditation. Some authors have demonstrated superior performance on the test of sustained attention compared to controls, and long-term meditators were superior to short-term meditators.⁵⁸⁻⁶⁷ The increment of attention performance during a SCE, might explain a grander brain activation than an NDE. Several authors have reported increased EEG Alpha and gamma bands during meditation.^{60,68-73}

The significance of CEEG measurement in the ICU setting includes detection of nonconvulsive status epilepticus in patients with unexplained consciousness disorder or mental deterioration, assessment of sedative/anesthetic state, early detection of delayed cerebral ischemia associated with subarachnoid hemorrhage, assessment of the outcome of patients with post-resuscitation encephalopathy or subsequent severe neurological disorders. CEEG can detect changes in EEG over time, thereby enabling the early initiation of treatment, and can evaluate response to treatment, if administered, over time.^{16,21,74-79}

Considering the high-resolution time of CEEG,^{30-33,46,80-83} this method offers a unique possibility to demonstrate that the brain undergoes continuous and dynamic functional changes during NDE and SCE remembering.

According to our literature review, this is the first article using CEEG to assess NDE and SCE.

Study Limitations

This study has some limitations, foremost the relatively small number of subjects. The subjective memorization of NDEs and SCEs may not adequately reflect past experience. The base case of not being asked to remember anything may not be as valid as being asked to remember something uneventful, such as peeling a banana. We plan to run future protocols to address these limitations.

5. Conclusion

In this paper, we demonstrated the usefulness of using the CEEG methodology to demonstrate increments of amplitude coinciding with NDE and SCE remembering period, although the increase of amplitude was greater for SCE. The increment was also greater in the Gamma, compared to the Alpha band. This method also showed a greater CEEG amplitude for SCE when frontal leads of both hemispheres were considered for the assessment. This suggests a greater cognitive function and attention increment during SCE remembering time.

Future research should be done on NDE and SCE using the CEEG methodology with more participants.

Compliance with ethical standards

Acknowledgments

The authors thank Fr. Gilberto Walker, who provided access to the hard-to-identify subjects who had a SCE.

Disclosure of conflict of interest

The Authors report no conflicts of interest.

Statement of ethical approval

Written informed consent was obtained from each subject with a form approved by IRB of the Institute of Neurology and Neurosurgery, Havana, Cuba.

Statement of informed consent

Informed consent was obtained from all individual participants included in the study.

References

- [1] Guilleminault C, Ariagno R, Souquet M, Dement WC. Abnormal polygraphic findings in near-miss sudden infant death. *Lancet* 1976;1:1326-1327.
- [2] Nahm M. Albert Heim (1849-1937): The Multifaceted Geologist Who Influenced Research Into Near-death Experiences and Suggestion Therapy. *Explore (NY)* 2016;12:256-258.
- [3] Sleutjes A, Moreira-Almeida A, Greyson B. Almost 40 years investigating near-death experiences: an overview of mainstream scientific journals. *J Nerv Ment Dis* 2014;202:833-836.
- [4] Cornwell AC, Weitzman ED, Marmarou A. Ambulatory and in-hospital continuous recording of sleep state and cardiorespiratory parameters in 'near miss' for the sudden infant death syndrome and control infants. *Biotelem Patient Monit* 1978;5:113-122.
- [5] Kralovec K, Ploderl M, Aistleiner U, Fartacek C, Fartacek R. [Are near-death experiences following attempted suicide important for suicide risk assessment? A case report]. *Neuropsychiatr* 2009;23:184-186.
- [6] Noyes R, Jr. Attitude change following near-death experiences. *Psychiatry* 1980;43:234-242.
- [7] Schenk PW. The benefits of working with a "dead" patient: hypnotically facilitated pseudo near-death experiences. *Am J Clin Hypn* 1999;42:36-49.
- [8] Greyson B. Biological aspects of near-death experiences. *Perspect Biol Med* 1998;42:14-32.
- [9] Beauregard M, Courtemanche J, Paquette V. Brain activity in near-death experiencers during a meditative state. *Resuscitation* 2009;80:1006-1010.
- [10] Palmieri A, Calvo V, Kleinbub JR, et al. "Reality" of near-death-experience memories: evidence from a psychodynamic and electrophysiological integrated study. *Front Hum Neurosci* 2014;8:429.
- [11] Lacey DJ. Sleep EEG abnormalities in children with near-miss sudden infant death syndrome, in siblings, and in infants with recurrent apnea. *J Pediatr* 1983;102:855-859.
- [12] Machado C, Newberg A, Machado Y, Salas R, Hesse R. Neural correlates of memories of near-death and mystical experiences preliminary research. *Researchgate* 2020;

https://www.researchgate.net/publication/344634264_Neural_correlates_of_memories_of_near-death_and_mystical_experiences_preliminary_research

- [13] Bruns N, Felderhoff-Moser U, Dohna-Schwake C, Woelfle J, Muller H. aEEG Use in Pediatric Critical Care-An Online Survey. *Front Pediatr* 2020;8:3.
- [14] Travis F. Autonomic and EEG patterns distinguish transcending from other experiences during Transcendental Meditation practice. *Int J Psychophysiol* 2001;42:1-9.
- [15] Kjellen Larsson A, Palsson B. [Continous EEG monitoring in patients with severe brain damage of indistinct value]. *Lakartidningen* 2020;117.
- [16] Gavvala J, Abend N, LaRoche S, et al. Continuous EEG monitoring: a survey of neurophysiologists and neurointensivists. *Epilepsia* 2014;55:1864-1871.
- [17] Koffman L, Rincon F, Gomes J, et al. Continuous Electroencephalographic Monitoring in the Intensive Care Unit: A Cross-Sectional Study. *J Intensive Care Med* 2020;35:1235-1240.
- [18] Badenes R, Prisco L, Maruenda A, Taccone FS. Criteria for Intensive Care admission and monitoring after elective craniotomy. *Curr Opin Anaesthesiol* 2017;30:540-545.
- [19] Austin T. The development of neonatal neurointensive care. *Pediatr Res* 2019.
- [20] Williamson C, Morgan L, Klein JP. Imaging in Neurocritical Care Practice. *Semin Respir Crit Care Med* 2017;38:840-852.
- [21] Appavu B, Foldes S, Temkit M, et al. Intracranial Electroencephalography in Pediatric Severe Traumatic Brain Injury. *Pediatr Crit Care Med* 2020;21:240-247.
- [22] Gedzelman ER, LaRoche SM. Long-term video EEG monitoring for diagnosis of psychogenic nonepileptic seizures. *Neuropsychiatr Dis Treat* 2014;10:1979-1986.
- [23] Laroche O, Wood SA, Tremblay LA, et al. First evaluation of foraminiferal metabarcoding for monitoring environmental impact from an offshore oil drilling site. *Mar Environ Res* 2016;120:225-235.
- [24] Laroche O, Wood SA, Tremblay LA, Lear G, Ellis JI, Pochon X. Metabarcoding monitoring analysis: the pros and cons of using co-extracted environmental DNA and RNA data to assess offshore oil production impacts on benthic communities. *PeerJ* 2017;5:e3347.
- [25] LaRoche S, Taylor D, Walter P. Tilt table testing with video EEG monitoring in the evaluation of patients with unexplained loss of consciousness. *Clin EEG Neurosci* 2011;42:202-205.
- [26] Lee JW, LaRoche S, Choi H, et al. Development and Feasibility Testing of a Critical Care EEG Monitoring Database for Standardized Clinical Reporting and Multicenter Collaborative Research. *J Clin Neurophysiol* 2016;33:133-140.
- [27] Morvezen R, Boudry P, Laroche J, Charrier G. Stock enhancement or sea ranching? Insights from monitoring the genetic diversity, relatedness and effective population size in a seeded great scallop population (*Pecten maximus*). *Heredity (Edinb)* 2016;117:142-148.
- [28] Pandraud-Riguet I, Bonnet-Zamponi D, Bourcier E, et al. Monitoring of Potentially Inappropriate Prescriptions in Older Inpatients: A French Multicenter Study. *J Am Geriatr Soc* 2017;65:2713-2719.
- [29] Riblet C, Deshommes E, Laroche L, Prevost M. True exposure to lead at the tap: Insights from proportional sampling, regulated sampling and water use monitoring. *Water Res* 2019;156:327-336.
- [30] Cuspineda E, Machado C, Aubert E, Galan L, Llopis F, Avila Y. Predicting outcome in acute stroke: a comparison between QEEG and the Canadian Neurological Scale. *Clin Electroencephalogr* 2003;34:1-4.
- [31] Cuspineda E, Machado C, Galan L, et al. QEEG prognostic value in acute stroke. *Clin EEG Neurosci* 2007;38:155-160.
- [32] Cuspineda ER, Machado C, Virues T, et al. Source analysis of alpha rhythm reactivity using LORETA imaging with 64-channel EEG and individual MRI. *Clin EEG Neurosci* 2009;40:150-156.
- [33] Machado C, Cuspineda E, Valdes P, et al. Assessing acute middle cerebral artery ischemic stroke by quantitative electric tomography. *Clin EEG Neurosci* 2004;35:116-124.
- [34] Bokkon I, Salari V. Hypothesis about brilliant lights by bioluminescent photons in near death experiences. *Med Hypotheses* 2012;79:47-49.

- [35] Charland-Verville V, Jourdan JP, Thonnard M, et al. Near-death experiences in non-life-threatening events and coma of different etiologies. *Front Hum Neurosci* 2014;8:203.
- [36] Martens PR. Near-death-experiences in out-of-hospital cardiac arrest survivors. Meaningful phenomena or just fantasy of death? *Resuscitation* 1994;27:171-175.
- [37] Peinkhofer C, Dreier JP, Kondziella D. Semiology and Mechanisms of Near-Death Experiences. *Curr Neurol Neurosci Rep* 2019;19:62.
- [38] Tatum WO, Miller DA, Shih JJ. Nonictal Sudden Unexpected Death in Epilepsy. *Mayo Clin Proc* 2015;90:1456-1457.
- [39] van Lommel P. Near-death experiences: the experience of the self as real and not as an illusion. *Ann N Y Acad Sci* 2011;1234:19-28.
- [40] Charland-Verville V, Ribeiro de Paula D, Martial C, et al. Characterization of near death experiences using text mining analyses: A preliminary study. *PLoS One* 2020;15:e0227402.
- [41] Royse D, Badger K. Burn Survivors' Near-Death Experiences: A Qualitative Examination. *Omega (Westport)* 2020;80:440-457.
- [42] Cassol H, D'Argembeau A, Charland-Verville V, Laureys S, Martial C. Memories of near-death experiences: are they self-defining? *Neurosci Conscious* 2019;2019:niz002.
- [43] Pistoia F, Mattiacci G, Sara M, Padua L, Macchi C, Sacco S. Development of the Italian Version of the Near-Death Experience Scale. *Front Hum Neurosci* 2018;12:45.
- [44] Khanna S, Moore LE, Greyson B. Full Neurological Recovery From *Escherichia coli* Meningitis Associated With Near-Death Experience. *J Nerv Ment Dis* 2018;206:744-747.
- [45] Kalogianni K, de Munck JC, Nolte G, Vardy AN, van der Helm FCT, Daffertshofer A. Spatial resolution for EEG source reconstruction-A simulation study on SEPs. *J Neurosci Methods* 2018;301:9-17.
- [46] Lehmann D, Faber PL, Achermann P, Jeanmonod D, Gianotti LR, Pizzagalli D. Brain sources of EEG gamma frequency during volitionally meditation-induced, altered states of consciousness, and experience of the self. *Psychiatry Res* 2001;108:111-121.
- [47] Moody RA. Getting comfortable with death & near-death experiences. Near-death experiences: an essay in medicine & philosophy. *Mo Med* 2013;110:368-371.
- [48] Moody RA, Jr. Near-death experiences: dilemma for the clinician. *Va Med* 1977;104:687-690.
- [49] Mindfulness meditation practice changes the brain. *Harv Womens Health Watch* 2011;18:6-7.
- [50] Alawieh H, Dawy Z, Yaacoub E, Abbas N, El-Imad J. A Real-time ECG Feature Extraction Algorithm for Detecting Meditation Levels within a General Measurement Setup. *Conf Proc IEEE Eng Med Biol Soc* 2019;2019:99-103.
- [51] Alderman BL, Olson RL, Brush CJ, Shors TJ. MAP training: combining meditation and aerobic exercise reduces depression and rumination while enhancing synchronized brain activity. *Transl Psychiatry* 2016;6:e726.
- [52] Baerentsen KB, Stokilde-Jorgensen H, Sommerlund B, et al. An investigation of brain processes supporting meditation. *Cogn Process* 2010;11:57-84.
- [53] Banquet JP. Spectral analysis of the EEG in meditation. *Electroencephalogr Clin Neurophysiol* 1973;35:143-151.
- [54] Barnes VA. EEG, hypometabolism, and ketosis during transcendental meditation indicate it does not increase epilepsy risk. *Med Hypotheses* 2005;65:202-203.
- [55] Barte HN, Bastien B. [A cold look at transcendental meditation]. *Ann Med Psychol (Paris)* 1980;138:839-848.
- [56] Tian F, Liu T, Xu G, et al. Surge of corticocardiac coupling in SHRSP rats exposed to forebrain cerebral ischemia. *J Neurophysiol* 2019;121:842-852.
- [57] Borjigin J, Lee U, Liu T, et al. Surge of neurophysiological coherence and connectivity in the dying brain. *Proc Natl Acad Sci U S A* 2013;110:14432-14437.
- [58] Afonso RF, Kraft I, Aratanha MA, Kozasa EH. Neural correlates of meditation: a review of structural and functional MRI studies. *Front Biosci (Schol Ed)* 2020;12:92-115.
- [59] Yoshida K, Takeda K, Kasai T, et al. Focused attention meditation training modifies neural activity and attention: longitudinal EEG data in non-meditators. *Soc Cogn Affect Neurosci* 2020.

[60] Vivot RM, Pallavicini C, Zamberlan F, Vigo D, Tagliazucchi E. Meditation Increases the Entropy of Brain Oscillatory Activity. *Neuroscience* 2020;431:40-51.

[61] Travis F. Temporal and spatial characteristics of meditation EEG. *Psychol Trauma* 2020;12:111-115.

[62] Kwak S, Kim SY, Bae D, et al. Enhanced Attentional Network by Short-Term Intensive Meditation. *Front Psychol* 2019;10:3073.

[63] Fell J, von Wrede R, Cox R. Commentary: The Human Default Consciousness and Its Disruption: Insights From an EEG Study of Buddhist Jhana Meditation. *Front Hum Neurosci* 2019;13:407.

[64] Magan D, Yadav RK, Bal CS, Mathur R, Pandey RM. Brain Plasticity and Neurophysiological Correlates of Meditation in Long-Term Meditators: A (18)Fluorodeoxyglucose Positron Emission Tomography Study Based on an Innovative Methodology. *J Altern Complement Med* 2019;25:1172-1182.

[65] Jiang H, He B, Guo X, et al. Brain-Heart Interactions Underlying Traditional Tibetan Buddhist Meditation. *Cereb Cortex* 2019.

[66] Telles S, Singh D, Naveen KV, Pailoor S, Singh N, Pathak S. P300 and Heart Rate Variability Recorded Simultaneously in Meditation. *Clin EEG Neurosci* 2019;50:161-171.

[67] Mahone MC, Travis F, Gevirtz R, Hubbard D. fMRI during Transcendental Meditation practice. *Brain Cogn* 2018;123:30-33.

[68] Colgan DD, Memmott T, Klee D, Ernst L, Han SJ, Oken B. A single case design to examine short-term intracranial EEG patterns during focused meditation. *Neurosci Lett* 2019;711:134441.

[69] Lee DJ, Kulubya E, Goldin P, Goodarzi A, Girgis F. Review of the Neural Oscillations Underlying Meditation. *Front Neurosci* 2018;12:178.

[70] Braboszcz C, Cahn BR, Levy J, Fernandez M, Delorme A. Increased Gamma Brainwave Amplitude Compared to Control in Three Different Meditation Traditions. *PLoS One* 2017;12:e0170647.

[71] DeLosAngeles D, Williams G, Burston J, et al. Electroencephalographic correlates of states of concentrative meditation. *Int J Psychophysiol* 2016;110:27-39.

[72] Guglietti CL, Daskalakis ZJ, Radhu N, Fitzgerald PB, Ritvo P. Meditation-related increases in GABA modulated cortical inhibition. *Brain Stimul* 2013;6:397-402.

[73] Cahn BR, Delorme A, Polich J. Event-related delta, theta, alpha and Gamma correlates to auditory oddball processing during Vipassana meditation. *Soc Cogn Affect Neurosci* 2013;8:100-111.

[74] Billimoria ZC, Rintoul NE, Sullivan KM, et al. Noninvasive neurocritical care monitoring for neonates on extracorporeal membrane oxygenation: where do we stand? *J Perinatol* 2020.

[75] Busl KM, Bleck TP, Varelas PN. Neurocritical Care Outcomes, Research, and Technology: A Review. *JAMA Neurol* 2019;76:612-618.

[76] Francoeur CL, Lee J, Dangayach N, Gidwani U, Mayer SA. Non-invasive cerebral perfusion monitoring in cardiac arrest patients: a prospective cohort study. *Clin Neurol Neurosurg* 2020;196:105970.

[77] Hilkman DMW, van Mook W, Mess WH, van Kranen-Mastenbroek V. The Use of Continuous EEG Monitoring in Intensive Care Units in The Netherlands: A National Survey. *Neurocrit Care* 2018;29:195-202.

[78] Robinson CP, Busl KM. Meningitis and encephalitis management in the ICU. *Curr Opin Crit Care* 2019;25:423-429.

[79] Schall JD, Stuphorn V, Brown JW. Monitoring and control of action by the frontal lobes. *Neuron* 2002;36:309-322.

[80] Fahrenfort JJ, Grubert A, Olivers CNL, Eimer M. Multivariate EEG analyses support high-resolution tracking of feature-based attentional selection. *Sci Rep* 2017;7:1886.

[81] Lu G, Hou Y, Chen Y, Guo F. Neuroimaging of EEG Rhythms at Resting State in Normal Elderly Adults: A Standard Low-Resolution Electromagnetic Tomography Study. *J Clin Neurophysiol* 2020.

[82] Luders E, Toga AW, Lepore N, Gaser C. The underlying anatomical correlates of long-term meditation: larger hippocampal and frontal volumes of gray matter. *Neuroimage* 2009;45:672-678.

[83] MacGregor LJ, Rodd JM, Gilbert RA, Hauk O, Sohoglu E, Davis MH. The Neural Time Course of Semantic Ambiguity Resolution in Speech Comprehension. *J Cogn Neurosci* 2020;32:403-425.