

Utilization of wearable technology data in chronic disease management

Oluwabusayo Oni ^{1,*} and Topeola Balkis Awofala ²

¹ Department of Mathematics, Lagos State University, Nigeria.

² Faculty of Health and Life Sciences, Department of Global Health, De Montfort University, Leicester, United Kingdom.

World Journal of Advanced Research and Reviews, 2022, 16(03), 1189-1195

Publication history: Received on 14 October 2022; revised on 21 December 2022; accepted on 26 December 2022

Article DOI: <https://doi.org/10.30574/wjarr.2022.16.3.1208>

Abstract

Chronic diseases such as diabetes and cardiovascular disease pose significant challenges for patients and healthcare systems around the globe. The advent of wearable technology, capable of monitoring vital health metrics such as glucose levels and heart rate in real-time, presents transformative possibilities for managing these conditions. This paper thoroughly explores the effectiveness of wearable devices in enhancing patient outcomes, emphasizing the role of continuous monitoring and timely interventions that these technologies facilitate. Additionally, it examines the critical aspects of patient compliance and engagement, highlighting how the design and functionality of wearable devices influence long-term use and adherence. The discussion extends to the integration challenges of these devices within existing healthcare frameworks, focusing on data privacy, accuracy, and the need for robust data management systems. The paper also considers the broader implications of wearable technology, suggesting that beyond individual patient management, these devices hold potential for large-scale health data analysis and policy-making, ultimately guiding future research directions to maximize their benefits in chronic disease management. This comprehensive examination not only underscores the capabilities of wearable technology but also maps out the necessary advancements and policy adjustments required to fully integrate these innovative tools into mainstream healthcare practices.

Keywords: Wearable Technology; Chronic Disease Management; Data Analytics; Patient Monitoring; Health Outcomes

1. Introduction

Chronic diseases, including diabetes and cardiovascular disorders, rank as major causes of mortality worldwide, presenting persistent challenges to health systems and necessitating the adoption of innovative management strategies. In response to these challenges, wearable technology has surfaced as a pivotal tool in modern healthcare, providing significant advancements in continuous patient monitoring and proactive health management. These technologies are designed to facilitate the real-time tracking of health metrics such as blood glucose levels and heart rate, which are crucial for the effective management of chronic conditions. The integration of such technologies into daily healthcare practices allows for an unprecedented level of detail and accuracy in patient monitoring, potentially transforming how care is administered across diverse settings [1]. The potential of wearable technology to transform chronic disease management lies in its ability to offer continuous, real-time insights that were previously unattainable with traditional healthcare methods. By leveraging data collected directly from patients, healthcare providers can customize treatments and interventions with unprecedented precision, potentially leading to better patient outcomes and reduced healthcare costs. This real-time data stream facilitates a dynamic treatment approach, adjusting to patient needs in a timely manner, thus enhancing the overall efficiency of healthcare delivery. For instance, studies have demonstrated that wearable devices can enhance the management of diabetes by providing patients and healthcare providers with instant feedback on blood sugar levels, thus enabling immediate adjustments to treatment protocols. Such instant feedback mechanisms can help prevent the complications associated with hyperglycemia and hypoglycemia, significantly improving patient quality of life [3].

* Corresponding author: Oluwabusayo Oni

Moreover, the use of wearable technology in chronic disease management also supports a more patient-centered healthcare approach. By empowering patients to monitor their own health status actively, wearables foster a greater sense of control over their health and encourage more responsible health-related behaviors. This shift not only supports better individual health outcomes but also contributes to broader public health objectives by reducing the incidence of disease complications and the subsequent need for hospitalization. Consequently, the scalability of wearable technologies could play a critical role in addressing the global burden of chronic diseases, offering both individual and systemic benefits that align with the goals of sustainable healthcare practices [8]. This study specifically aims to evaluate the impact of wearable technology on the management of two prevalent chronic diseases: diabetes and cardiovascular diseases. These conditions were chosen due to their high prevalence, the severity of their complications, and the substantial benefits that real-time data monitoring can provide in managing such diseases. The objective is to assess how wearable devices can contribute to more personalized and efficient healthcare, examining both the benefits and the challenges of their integration into routine clinical practice.

However, the integration of wearable technology in healthcare settings is not without challenges. Issues such as data accuracy, patient privacy, and the long-term engagement of users with these devices are critical factors that need careful consideration. Studies have indicated that while wearables are promising for enhancing disease management, ensuring the accuracy and reliability of the data they generate is essential for their practical application in clinical settings [8]. In conclusion, wearable technology holds considerable promise for revolutionizing the management of chronic diseases by providing continuous, data-driven insights into patients' health statuses. As this technology continues to evolve, future research must address the existing gaps in data accuracy, privacy concerns, and patient adherence to maximize its effectiveness. With careful implementation, wearable devices have the potential to significantly improve outcomes for patients with chronic conditions, making them an invaluable tool in the arsenal of modern healthcare [12].

2. Literature Review

Wearable devices have undergone a remarkable evolution, transitioning from simple gadgets that primarily tracked steps and physical activity to sophisticated health monitoring systems capable of delivering medical-grade data. This advancement has been driven by the integration of advanced sensors and enhanced computational algorithms, which together facilitate the continuous monitoring of critical health metrics such as electrocardiograms, oxygen saturation, and stress levels. The capacity of these devices to offer real-time insights into a patient's physiological state has revolutionized their role in healthcare, transforming them into essential tools for chronic disease management. By bridging the gap between sporadic health assessments and ongoing care, wearables allow for a more proactive approach to health management, adapting to the needs of patients in real time [13]. The effectiveness of wearable technology in healthcare is well-documented across various environments, from remote patient monitoring systems to acute in-hospital care. In managing chronic diseases, where timely information and intervention are critical, the impact of wearables is particularly profound. For example, in the management of diabetes, the use of continuous glucose monitors (CGMs) has been shown to significantly enhance glycemic control, surpassing traditional monitoring methods. These devices provide not only immediate feedback but also compile long-term data trends, which can be analyzed to create highly personalized and effective treatment plans. This level of tailored healthcare, supported by continuous data feedback, empowers patients and clinicians to manage the condition more effectively [3].

However, despite the promising benefits of wearable technology in chronic disease management, its full potential has yet to be completely tapped, largely due to existing technological and methodological constraints. A significant issue is the variance in device performance, which can critically impact the accuracy and reliability of the data provided. This inconsistency often arises from variations in sensor quality, algorithmic processing, and user-specific factors such as skin type. Moreover, while these devices are capable of collecting extensive data, the healthcare sector still faces significant hurdles in processing and effectively using this information to make informed clinical decisions. There is a pressing need for more sophisticated data analytics frameworks to adequately support the integration of this technology into healthcare practices, ensuring that data-driven insights are translated into actionable, clinical strategies [8]. Data accuracy is critical for ensuring that the health insights provided by wearables can be trusted by both patients and healthcare providers. Accuracy issues can lead to incorrect health assessments, potentially causing harm. Alongside accuracy, patient compliance also plays a crucial role in the utility of wearable technology. The design and aesthetics of devices, as well as their ease of use, significantly impact user adherence. Devices that are cumbersome, obtrusive, or complex can deter consistent use, thus diminishing the potential health benefits they may provide. Effective patient education and engagement strategies are essential to maximize compliance and ensure that wearable technology can fully support chronic disease management [7].

Integrating wearable technology data with existing healthcare systems is a complex but critical task for maximizing its benefits. This integration involves not only technological alignment, such as ensuring compatibility between different

data formats and healthcare IT systems but also addressing regulatory and privacy concerns. Data from wearable devices must be secured against unauthorized access and breaches, which requires robust cybersecurity measures and compliance with health data regulations such as HIPAA in the United States. Additionally, healthcare providers need training and tools to interpret and utilize the data effectively in their clinical workflows, which involves substantial changes to existing practices and systems [10, 12]. The integration of wearable technology into chronic disease management holds transformative potential for healthcare. By providing continuous, accurate, and actionable health data, wearables can significantly enhance patient outcomes and optimize healthcare delivery. However, realizing this potential fully requires overcoming significant challenges related to device accuracy, patient compliance, and data integration. Continued technological advancements, combined with strategic healthcare policies and patient-centered design principles, are essential for wearables to become a cornerstone in chronic disease management [3].

3. Advancing Chronic Disease Management through Wearable Technology

3.1. Effectiveness of Wearable Technology in Disease Management

Wearable devices have proven to be instrumental in transforming patient management by providing continuous, real-time health data. This capability allows for timely medical interventions, which are crucial in managing chronic diseases such as diabetes and heart conditions. For example, real-time monitoring of glucose levels using continuous glucose monitors (CGMs) has significantly improved the management of diabetes by allowing patients and healthcare providers to adjust treatment plans instantaneously. Such interventions can prevent severe complications and stabilize the patient's condition more efficiently [1]. The utilization of wearables in clinical settings has demonstrated positive outcomes across various patient demographics. Studies have highlighted how wearable technology can aid in significantly reducing hospital readmission rates by enabling earlier detection of deteriorating conditions. Moreover, the ability to monitor patients in real environments rather than controlled clinical settings provides a more accurate picture of a patient's day-to-day status, leading to more personalized and effective care strategies [13].

Despite their benefits, the effectiveness of wearable devices heavily depends on the accuracy and reliability of the data they collect. Issues such as sensor inaccuracies, data drift, and interference from external factors can impact the quality of the data, potentially leading to incorrect assessments or interventions. Ongoing research aims to enhance sensor technology and data algorithms to address these issues. Improvements in this area are crucial for ensuring that wearables can be reliably integrated into chronic disease management protocols [8]. As wearable technology continues to evolve, future research is needed to further verify and refine the integration of these devices into standardized healthcare practices. This includes large-scale clinical trials to validate the effectiveness of wearables in diverse populations and under various clinical conditions. Additionally, the development of advanced analytics and machine learning models to better interpret the vast amount of data generated by these devices could unlock new insights into patient health and disease management [5].

3.2. Patient Compliance and Engagement

The design and functionality of wearable devices play a crucial role in determining patient compliance. Devices that are user-friendly and integrate seamlessly into daily life are more likely to be adopted and used consistently. Factors such as comfort, aesthetic appeal, and ease of use significantly influence a patient's willingness to continuously engage with the technology. Devices that provide actionable insights and easy-to-understand data empower patients to take an active role in managing their health, thereby increasing usage rates [7]. Wearable technology offers the unique advantage of providing continuous feedback to users, which is a powerful motivator for behavior change. For instance, patients with chronic conditions like hypertension can monitor their blood pressure and receive immediate feedback on the effects of dietary choices or physical activity. This immediate linkage between actions and their health impacts can encourage patients to make healthier lifestyle choices, ultimately leading to improved health outcomes. The motivation derived from seeing real-time improvements can sustain patient engagement and adherence to prescribed health regimens [13].

The continuous use of wearable devices can lead to significant long-term health benefits, particularly for patients managing chronic diseases. By adhering to the health metrics and insights provided by wearables, patients can better manage symptoms and potentially reduce the severity of their conditions. Research has shown that consistent monitoring using wearable devices can decrease the need for emergency medical interventions, reduce hospitalization rates, and improve overall quality of life by enabling better disease management [5]. Despite the potential benefits, there are challenges to patient engagement that must be addressed to maximize the effectiveness of wearable technology. Issues such as digital literacy, privacy concerns, and the economic cost of devices can hinder widespread adoption. To overcome these barriers, it is essential for developers to focus on creating inclusive, accessible, and affordable

wearables. Additionally, educating patients on how to effectively use and benefit from wearable technology can enhance engagement and compliance [8].

3.3. Data Implementation in Chronic Disease Management

The implementation of data-driven strategies in chronic disease management has revolutionized how healthcare providers approach treatment and monitoring. The integration of large-scale data analytics enables a more nuanced understanding of chronic conditions such as diabetes, heart disease, and hypertension. By analyzing patient data collected from various sources, including electronic health records (EHRs), wearable devices, and patient-reported outcomes, healthcare professionals can identify patterns and predict health deteriorations before they become critical. This proactive approach not only improves patient outcomes but also reduces the burden on healthcare systems by minimizing emergency interventions and hospital readmissions [9, 15]. The cornerstone of effective chronic disease management is the ability to tailor treatments to individual patient needs. Data analytics facilitate this by allowing for the aggregation and analysis of vast amounts of health data, which can then be used to develop personalized treatment plans. For example, machine learning models can analyze continuous glucose monitor (CGM) data to optimize insulin therapy for diabetes patients, adapting doses in real time based on sugar levels, dietary intake, and physical activity. Such personalized approaches have been shown to significantly improve glycemic control and patient satisfaction [11, 16].

While the benefits of data implementation in chronic disease management are substantial, several challenges persist. Key among these is the issue of data integration across disparate healthcare systems, which often operate in silos with incompatible data formats. Additionally, the quality and consistency of data collected can vary, affecting the accuracy of analyses and the effectiveness of derived interventions. Privacy and security concerns also play a significant role, as the management of sensitive patient data must comply with stringent regulations such as HIPAA in the United States, ensuring that patient information is protected from unauthorized access [17]. Looking forward, the field of chronic disease management is poised for further transformation as advancements in technology and data analytics continue to evolve. The implementation of artificial intelligence (AI) and the Internet of Things (IoT) in healthcare are expected to further enhance the capacity for real-time data analysis and patient monitoring. For instance, AI algorithms could predict patient exacerbations based on real-time data, facilitating timely interventions that could prevent hospitalizations. Moreover, the integration of genomic data with health informatics could lead to breakthroughs in understanding the genetic basis of chronic diseases, paving the way for genomic medicine to be incorporated into everyday healthcare practice [14, 18].

3.4. Integration with Healthcare Systems

The integration of data from wearable devices into existing healthcare systems presents a multifaceted challenge. Wearables generate a vast amount of data, which can provide valuable insights into patient health when properly analyzed and used. However, the process of transferring and integrating this data into healthcare systems requires sophisticated data management systems that can handle the volume, velocity, and variety of data produced. Moreover, these systems must be designed to ensure the usability of data by healthcare professionals, facilitating timely and effective medical decisions [12]. One of the most significant hurdles in the integration of wearable technology into healthcare systems is addressing data privacy concerns. Patients and providers must be confident that sensitive health information is protected against unauthorized access and breaches. Compliance with healthcare regulations, such as the Health Insurance Portability and Accountability Act (HIPAA) in the United States or the General Data Protection Regulation (GDPR) in Europe, is essential. These regulations set standards for data protection and require that healthcare providers and technology developers implement strong security measures to protect health information [10].

Effective integration of wearable technology data into healthcare systems also depends on the robustness of data management systems. These systems must not only secure health data but also ensure it is accurate, consistent, and readily accessible to healthcare providers. Advanced data analytics tools are required to filter, process, and present wearable data in a manner that is meaningful and actionable for clinical use. The challenge lies in developing interfaces and protocols that allow for seamless communication between wearable devices and existing medical records systems without compromising data integrity or functionality [4]. To overcome these integration challenges, strategic planning and implementation are crucial. Healthcare institutions need to collaborate closely with technology developers to ensure that the integration of wearable data aligns with clinical workflows and enhances care delivery. Training healthcare providers to use these new tools effectively and adapting clinical protocols to incorporate wearable data can drive the successful adoption of this technology. This approach ensures that wearable technology serves as a complement to traditional healthcare methods, enhancing rather than complicating the treatment process [8].

Limitations

A significant limitation of this study is its reliance on secondary data. While secondary data can provide extensive insights and facilitate broad analyses without the cost and time associated with primary data collection, it also poses challenges. These challenges include potential biases, inconsistencies in data collection methods, and the relevance of the data to specific research questions. Such factors can impact the generalizability and applicability of the research findings to different patient demographics or clinical conditions. Therefore, the conclusions drawn from this study must be considered within the context of these potential limitations [13]. Another critical limitation is the variability in device performance across different populations. Wearable technology can exhibit different levels of accuracy and effectiveness depending on a range of factors including the user's age, skin type, lifestyle, and the specific health conditions being monitored. For example, devices that rely on optical sensors for heart rate monitoring may be less accurate on darker skin or during intense physical activity. This variability can affect the reliability of the data collected, thus impacting the study's findings on the effectiveness of wearable technology in managing chronic diseases [2].

The study's insights are also limited by the lack of longitudinal data, which is crucial for understanding the long-term impacts of wearable technology on chronic disease management. Longitudinal studies are essential to assess the sustainability of benefits provided by wearable technology, such as changes in patient behavior, long-term health outcomes, and the economic impacts on healthcare systems. Such studies would provide a more comprehensive understanding of how continuous monitoring and data-driven interventions can improve chronic disease management over extended periods [2]. To address these limitations, future research should focus on gathering primary data through prospective studies and randomized controlled trials. These studies should aim to include diverse populations to better understand the variability in device performance and its implications for different demographic groups. Additionally, longitudinal research is needed to evaluate the long-term efficacy and cost-effectiveness of wearable technology in real-world settings, providing deeper insights into its role in chronic disease management and patient care [12].

Recommendations

To strengthen the evidence base around the use of wearable technology in chronic disease management, future research should prioritize large-scale studies. Such studies are essential for validating the initial findings observed in smaller or preliminary research. They should aim to replicate the studies across diverse populations and varied geographic settings to ensure the results are widely applicable and robust. This approach will help to confirm the reliability and effectiveness of wearable devices in monitoring and managing health conditions on a broader scale, providing a stronger foundation for their use in clinical settings [13].

Another critical area for future research is the integration of wearable technology with advanced data analytics techniques. By applying sophisticated machine learning and artificial intelligence algorithms to the data collected from wearables, researchers can enhance the predictive capabilities of these devices. This could lead to earlier detection of potential health issues and more personalized treatment plans, ultimately improving patient outcomes. Exploring these possibilities will be crucial for advancing the functionality of wearable technology in healthcare [5].

For healthcare practice, it is imperative to train medical staff on the effective use of wearable technology data. Healthcare providers need to understand how to interpret and integrate the continuous stream of data from wearables into their clinical decision-making processes. Training programs should focus on the practical aspects of data utilization, ensuring that healthcare professionals are equipped to leverage this technology to its fullest potential, thereby enhancing patient care [8].

Alongside training, addressing privacy concerns related to wearable technology is essential. Healthcare organizations should implement robust data security measures to protect sensitive health information. Additionally, educating patients about how their data is used and safeguarded can help in mitigating privacy concerns and boosting their confidence in using these devices. Ensuring compliance with existing data protection laws and possibly advocating for stricter regulations could further enhance data security and privacy in the use of wearable technology [12].

4. Conclusion

Wearable technology has emerged as a transformative force in chronic disease management, offering the potential to significantly enhance patient care. The ability of these devices to monitor health metrics in real time presents a major advancement over traditional methods, which often rely on intermittent data collection that may miss critical changes in a patient's condition. With wearables, healthcare providers can access a continuous stream of data, allowing for timely interventions that can prevent complications, manage symptoms more effectively, and potentially reduce the overall

cost of healthcare by minimizing the need for emergency interventions and hospitalizations. The real-time data provided by wearable devices facilitates more personalized care strategies, tailoring treatments to the individual needs of each patient. This personalization can lead to better management of chronic diseases, as treatments can be adjusted based on precise, up-to-date information regarding a patient's health status. Such dynamic management approaches can significantly improve patient outcomes, enhancing quality of life and disease prognosis.

Despite these benefits, the full potential of wearable technology in healthcare has yet to be completely realized. Ongoing research is crucial to address the current limitations of these devices, such as issues with data accuracy, device interoperability, and user compliance. Future studies should focus on enhancing the technological capabilities of wearables, improving the integration of device data with healthcare systems, and exploring new applications for wearable technology in medical diagnostics and disease prediction. As technology continues to advance, the healthcare sector must also adapt to integrate these innovations effectively. This includes developing policies that support the safe and ethical use of wearable technology, training healthcare professionals to utilize these tools appropriately, and educating patients on the benefits and limitations of wearable devices. By addressing these areas, the integration of wearable technology into routine healthcare practice can be optimized, leading to more widespread adoption and ultimately, better health outcomes for patients with chronic conditions. The future of wearable technology in healthcare looks promising, with the potential to revolutionize how chronic diseases are managed. As we continue to innovate and refine these technologies, their integration into daily medical practice becomes more feasible and effective, paving the way for a new era in personalized and proactive healthcare management.

Compliance with ethical standards

Disclosure of conflict of interest

No conflict of interest to be disclosed.

References

- [1] Secher, A. L., Ringholm, L., Andersen, H. U., Damm, P., & Mathiesen, E. R. (2013). The effect of real-time continuous glucose monitoring in pregnant women with diabetes: a randomized controlled trial. *Diabetes care*, 36(7), 1877-1883.
- [2] Nelson, E. C., Sools, A. M., Vollenbroek-Hutten, M. M., Verhagen, T., & Noordzij, M. L. (2020). Embodiment of wearable technology: qualitative longitudinal study. *JMIR mHealth and uHealth*, 8(11), e16973.
- [3] Ajakwe, S. O., Nwakanma, C. I., Kim, D. S., & Lee, J. M. (2022). Key wearable device technologies parameters for innovative healthcare delivery in B5G network: A review. *IEEE Access*, 10, 49956-49974.
- [4] Dinh-Le, C., Chuang, R., Chokshi, S., & Mann, D. (2019). Wearable health technology and electronic health record integration: scoping review and future directions. *JMIR mHealth and uHealth*, 7(9), e12861.
- [5] Milani, R. V., Bober, R. M., & Lavie, C. J. (2016). The role of technology in chronic disease care. *Progress in cardiovascular diseases*, 58(6), 579-583.
- [6] Manta, C., Jain, S. S., Coravos, A., Mendelsohn, D., & Izmailova, E. S. (2020). An evaluation of biometric monitoring technologies for vital signs in the era of COVID-19. *Clinical and translational science*, 13(6), 1034-1044.
- [7] Greiwe, J., & Nyenhuis, S. M. (2020). Wearable technology and how this can be implemented into clinical practice. *Current allergy and asthma reports*, 20, 1-10.
- [8] Whitelaw, S., Pellegrini, D. M., Mamas, M. A., Cowie, M., & Van Spall, H. G. (2021). Barriers and facilitators of the uptake of digital health technology in cardiovascular care: a systematic scoping review. *European Heart Journal-Digital Health*, 2(1), 62-74.
- [9] Olutimo, L. A., Oni, O. J., & Omoko, I. D. (2020, March). On the Boundedness Analysis of the State Variables for a Loaded DC Servo Motor System. In 2020 International Conference in Mathematics, Computer Engineering and Computer Science (ICMCECS) (pp. 1-4). IEEE.
- [10] Kim, H. K., & Lee, C. W. (2021). Relationships among healthcare digitalization, social capital, and supply chain performance in the healthcare manufacturing industry. *International Journal of Environmental Research and Public Health*, 18(4), 1417.

- [11] Olutimo, A. L., Oni, O. J., & Ayeni, O. C. Ultimate Boundedness Result For A Certain System Of Third Order Nonlinear Differential Equations.
- [12] Roelen, K. (2016). Bridging the Gap: Synthesising Evidence from Secondary Quantitative and Primary Qualitative Data.
- [13] Lu, L., Zhang, J., Xie, Y., Gao, F., Xu, S., Wu, X., & Ye, Z. (2020). Wearable health devices in health care: narrative systematic review. *JMIR mHealth and uHealth*, 8(11), e18907.
- [14] Olutimo, A. L., Oni, O. J., & Ayeni, O. C. ULTIMATE BOUNDEDNESS RESULT FOR A CERTAIN SYSTEM OF THIRD ORDER NONLINEAR DIFFERENTIAL EQUATIONS.
- [15] Helm, J. E., Alaeddini, A., Stauffer, J. M., Bretthauer, K. M., & Skolarus, T. A. (2016). Reducing hospital readmissions by integrating empirical prediction with resource optimization. *Production and Operations Management*, 25(2), 233-257.
- [16] Wang, Y., Kung, L., & Byrd, T. A. (2018). Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations. *Technological forecasting and social change*, 126, 3-13.
- [17] Theodos, K., & Sittig, S. (2020). Health information privacy laws in the digital age: HIPAA doesn't apply. *Perspectives in health information management*, 18(Winter), 1l.
- [18] Fouad, H., Hassanein, A. S., Soliman, A. M., & Al-Feel, H. (2020). Analyzing patient health information based on IoT sensor with AI for improving patient assistance in the future direction. *Measurement*, 159, 107757.