

Leveraging big data for environmental sustainability and resource management

Toheeb Ekundayo ^{1,*}, Frieyo Omowunmi Omotoyosi ² and Topeola Balkis Awofala ³

¹ Department of Operations and Information Systems, Information Systems, University of Utah, Utah, USA.

² Faculty of Science, Department of Botany, Obafemi Awolowo University Ile-Ife, Nigeria.

³ Faculty of Health and Life Sciences, De Montfort University, Leicester, United Kingdom.

World Journal of Advanced Research and Reviews, 2022, 16(03), 1196-1202

Publication history: Received on 01 November 2022; revised on 22 December 2022; accepted on 30 December 2022

Article DOI: <https://doi.org/10.30574/wjarr.2022.16.3.1327>

Abstract

The increasing availability of big data offers unprecedented opportunities to address pressing environmental challenges and optimize resource management. By harnessing advanced analytics, machine learning, and real-time monitoring systems, big data enables more informed decision-making to promote sustainability. This paper explores the role of big data in environmental sustainability, focusing on its applications in resource optimization, predictive modeling, biodiversity monitoring, and policy development. The study also discusses challenges, implications, and potential solutions, providing actionable recommendations for leveraging big data to achieve sustainable development goals and mitigate environmental degradation.

Keywords: Big Data; Environmental Sustainability; Predictive Modeling; Resource Management; Biodiversity Monitoring

1. Introduction

Environmental sustainability and effective resource management are critical global priorities as the world faces climate change, biodiversity loss, and resource scarcity. Climate change continues to escalate, disrupting ecosystems, economies, and societies. Biodiversity loss undermines ecosystem stability, while resource scarcity intensifies competition for essentials such as water, food, and energy. Addressing these interconnected challenges demands innovative approaches that transcend traditional methodologies. The increasing complexity of environmental challenges necessitates advanced tools and frameworks to enable comprehensive monitoring, analysis, and decision-making. Big data technologies, characterized by their ability to process vast amounts of information in real time, have emerged as a transformative solution. Big data provides unprecedented insights into environmental processes and trends by collecting and analyzing data from diverse sources, such as satellite imagery, IoT sensors, and social media [1]. One of the key advantages of big data lies in its capacity to enable evidence-based decision-making. Traditional environmental management often relied on fragmented and outdated data, resulting in delayed responses and suboptimal outcomes. With big data, decision-makers can access real-time information to proactively address issues such as deforestation, water pollution, and greenhouse gas emissions [2, 7]. For instance, predictive models powered by machine learning can forecast extreme weather events, allowing governments and organizations to prepare and mitigate risks [1].

Big data also plays a pivotal role in fostering collaboration among stakeholders. Environmental challenges are inherently interdisciplinary, requiring input from scientists, policymakers, industry leaders, and local communities. By providing a unified platform for data sharing and analysis, big data promotes collective problem-solving and the integration of diverse perspectives. This collaborative approach is essential for developing holistic solutions that balance environmental, economic, and social considerations [6]. Moreover, the integration of big data into

* Corresponding author: Toheeb Ekundayo

environmental science has catalyzed advancements in resource management [3]. Precision agriculture, for example, leverages data from sensors and satellites to optimize water usage, reduce fertilizer application, and enhance crop yields. Similarly, smart grid technologies use data analytics to balance energy supply and demand, improving efficiency and reducing environmental impact [5]. These innovations exemplify how big data can align resource utilization with sustainability goals.

This paper examines the potential of big data to drive sustainable practices and improve resource management. By exploring its transformative impact on environmental monitoring, predictive modeling, biodiversity conservation, and policymaking, we highlight the opportunities and challenges associated with integrating data analytics into sustainability efforts. By bridging the gap between technological innovation and environmental science, stakeholders can address pressing sustainability challenges and foster a more resilient and sustainable future.

2. Literature Review

Big data has emerged as a transformative force in environmental sustainability, offering unparalleled opportunities to analyze and address complex ecological challenges. [8] highlighted the role of big data in predicting environmental changes and optimizing resource utilization. By integrating advanced analytics, stakeholders can monitor ecosystem dynamics and develop adaptive strategies to mitigate environmental degradation. This foundational understanding underscores the criticality of big data in shaping sustainable futures. Climate modeling has greatly benefited from big data, enabling more accurate predictions of weather patterns, temperature changes, and extreme events. [9] demonstrated how machine learning algorithms enhance the precision of climate simulations, thereby improving disaster preparedness and resilience. Big data analytics also facilitates long-term climate studies, helping researchers identify trends and project future scenarios with greater reliability.

Resource management is one of the most significant applications of big data in environmental science. According to [8] data-driven approaches in precision agriculture have revolutionized farming practices by optimizing water and fertilizer usage. Similarly, [10] emphasized the role of smart grids in balancing energy demand and supply, showcasing the potential of big data to improve resource efficiency and reduce waste across various sectors. Big data has facilitated large-scale biodiversity monitoring, providing valuable insights into species distribution, habitat changes, and conservation priorities. [11] discussed how satellite imagery and machine learning algorithms are used to track deforestation and habitat destruction. Citizen science initiatives, supported by big data platforms, have also emerged as a powerful tool for engaging communities in biodiversity conservation efforts, amplifying the impact of traditional approaches.

Despite its potential, the integration of big data into environmental strategies faces several challenges, including data accessibility, high computational demands, and ethical concerns. [12, 17] pointed out that data silos and fragmented systems often hinder collaboration and limit the utility of big data. Furthermore, ensuring data privacy and addressing ethical considerations remain critical to the widespread adoption of data-driven solutions. Big data is increasingly influencing environmental policymaking, offering evidence-based insights that guide decision-making processes. [13, 20] explored how carbon footprint tracking tools inform policies targeting high-emission sectors. By providing real-time data, big data analytics enhances the evaluation of policy outcomes and supports the development of adaptive measures that respond to evolving environmental challenges.

Recent advancements in data analytics technology, such as cloud computing and AI, have further expanded the capabilities of big data in environmental science. [14] Highlighted the role of distributed computing systems in processing vast datasets, enabling real-time analyses at unprecedented scales. These technological innovations are paving the way for more sophisticated and impactful applications of big data in sustainability efforts

3. Leveraging Big Data for a Sustainable Future

- **Real-Time Monitoring and Resource Optimization:** Real-time data collection from sensors, satellites, and IoT devices has revolutionized environmental monitoring. These technologies enable the continuous assessment of critical resources, such as water, energy, and soil quality. Precision agriculture, for example, uses real-time data on soil moisture, nutrient levels, and weather patterns to optimize water and fertilizer usage, thereby reducing environmental impact [15]. Additionally, smart grids utilize real-time analytics to adjust energy supply dynamically, minimizing waste and ensuring sustainability. Smart water management systems have also emerged as crucial tools for addressing water scarcity. By analyzing consumption patterns and identifying leaks in infrastructure, these systems optimize water distribution and reduce wastage [16].

Similarly, real-time air quality monitoring networks provide critical data for mitigating pollution in urban areas, improving public health outcomes.

The combination of real-time monitoring and machine learning further enhances the accuracy of predictions. Predictive maintenance, for instance, leverages data from IoT sensors to identify potential equipment failures before they occur, reducing downtime and resource wastage. These advancements illustrate how real-time data collection can align operational efficiency with environmental sustainability goals. In addition to operational benefits, real-time monitoring systems contribute to policy development. By providing actionable insights, these systems enable governments to design and implement targeted regulations that address specific environmental challenges. For example, real-time emissions data can inform carbon pricing mechanisms, incentivizing industries to adopt cleaner technologies [18].

- **Predictive Modeling for Environmental Management:** Predictive models, powered by big data, play a crucial role in forecasting environmental phenomena, such as droughts, floods, and deforestation. These models enable proactive decision-making, helping mitigate ecological and economic impacts. For example, machine learning algorithms trained on historical climate data can accurately predict extreme weather events, enabling better preparedness and response strategies [19]. Furthermore, predictive analytics has been instrumental in anticipating resource shortages and planning sustainable urban development. Predictive modeling also extends to renewable energy optimization. By analyzing weather patterns and energy demand, predictive models enhance the integration of solar and wind power into energy grids. This capability reduces reliance on fossil fuels and supports the transition to cleaner energy sources [21, 24].

Disaster risk management is another area where predictive modeling has demonstrated significant value. Advanced algorithms analyze geospatial and historical data to identify regions at high risk of natural disasters, enabling governments and organizations to allocate resources effectively. These models also support the development of early warning systems, minimizing the loss of life and property during catastrophic events. The application of predictive models in ecosystem management further highlights their versatility. By forecasting changes in habitat conditions, these models assist conservationists in prioritizing interventions and allocating resources to protect vulnerable species. This proactive approach strengthens biodiversity conservation efforts and enhances ecosystem resilience [22].

- **Biodiversity Monitoring and Conservation:** Big data tools facilitate large-scale biodiversity monitoring through satellite imagery, drone technology, and citizen science platforms. Advanced image recognition algorithms help track species populations, detect habitat changes, and identify threats to biodiversity. Platforms like Global Forest Watch leverage satellite data to monitor deforestation trends, offering actionable insights for conservation efforts [4, 31]. These technologies have proven invaluable in protecting endangered species and preserving critical ecosystems. Drone technology has expanded the scope of biodiversity monitoring by providing high-resolution images of remote and inaccessible areas. These images enable researchers to map habitats, assess ecosystem health, and track changes over time. Additionally, drones equipped with thermal imaging sensors can monitor nocturnal species, providing valuable data for comprehensive biodiversity assessments [23].

Citizen science initiatives have further enriched biodiversity monitoring by involving local communities in data collection. Mobile applications and online platforms enable individuals to report wildlife sightings, contributing to large datasets that inform conservation strategies. This participatory approach not only enhances data coverage but also fosters public engagement in environmental stewardship. The integration of artificial intelligence (AI) with big data has revolutionized biodiversity monitoring. AI algorithms can process vast amounts of data from multiple sources, identifying patterns and trends that inform conservation priorities. For example, machine learning models analyze audio recordings to detect specific bird calls, providing insights into population dynamics and habitat conditions [25].

- **Data-Driven Policy Development:** The role of data analytics in shaping environmental policy is transformative. By delivering evidence-based insights, big data empowers policymakers to evaluate the effectiveness of existing measures and design adaptive strategies. For example, carbon tracking tools utilize data to identify emission hotspots, enabling targeted interventions in high-pollution areas [26]. Furthermore, data analytics fosters international collaboration on environmental issues by creating a shared framework for assessing global challenges and tracking progress toward sustainability goals.

Data-driven policy development also plays a critical role in urban planning. By analyzing traffic patterns, energy consumption, and waste generation, policymakers can design sustainable cities that minimize environmental impact while improving quality of life. Smart city initiatives, for instance, leverage real-time data to optimize public transportation systems, reducing carbon emissions and enhancing air quality [27]. Big data analytics is equally vital for enforcing environmental regulations. Remote sensing technologies and satellite imagery allow authorities to monitor

compliance with land use and pollution control policies. These tools provide objective, verifiable evidence for identifying violations and holding offenders accountable, thereby strengthening the integrity of environmental governance [28].

The use of big data in policy evaluation further highlights its importance. By analyzing both historical and real-time data, policymakers can assess the outcomes of implemented measures and identify areas for improvement. This iterative, data-driven approach ensures that policies remain effective, adaptive, and responsive to evolving environmental challenges.

3.1. Implications

The integration of big data into environmental sustainability offers immense opportunities but also raises critical implications that require careful consideration. One significant benefit is its ability to enhance decision-making processes across environmental sectors. By providing comprehensive, real-time insights, big data empowers stakeholders to make informed decisions that align with sustainability goals. This approach has been shown to improve resource allocation, mitigate risks, and promote long-term ecological balance [29].

Another important implication is the potential for big data to address global environmental inequities. Developing countries, which often face disproportionate impacts from climate change, can leverage big data to implement cost-effective and impactful interventions. For example, satellite monitoring systems provide critical insights into deforestation and land-use changes, enabling governments to act proactively [30]. However, ensuring equitable access to big data technologies and infrastructure remains a significant challenge.

Big data also fosters cross-sectoral collaboration, which is essential for tackling complex environmental challenges. Issues like climate adaptation and biodiversity conservation often require coordinated efforts from diverse stakeholders, including scientists, policymakers, industry leaders, and communities. By offering a unified platform for data sharing and analysis, big data facilitates effective collaboration across disciplines [34].

Despite its benefits, the integration of big data raises ethical concerns, particularly regarding privacy and security. Collecting and analyzing environmental data often involves sensitive information about ecosystems and human populations. Ensuring responsible and transparent data use is critical to maintaining public trust and preventing misuse. Establishing robust ethical guidelines and data governance frameworks is therefore essential [32].

Finally, the reliance on big data underscores the need for robust technological infrastructure. Processing and storing the vast amounts of data generated by environmental monitoring systems require advanced computational resources. Investments in cloud computing, machine learning platforms, and high-speed internet are necessary to support the seamless integration of big data into sustainability efforts [33].

Recommendations

To fully harness the potential of big data in environmental sustainability, several key recommendations must be implemented.

- **Invest in Advanced Technological Infrastructure:** Governments and organizations must prioritize the development of high-capacity data centers, cloud computing systems, and IoT networks to support real-time data collection and analysis. These investments are critical for enabling stakeholders to maximize the utility of big data in addressing environmental challenges [33].
- **Foster Interdisciplinary Collaboration:** Effective application of big data requires bridging the gap between data scientists, environmentalists, policymakers, and local communities. Collaborative platforms and initiatives can enhance knowledge sharing and drive innovation in sustainability practices, ensuring holistic solutions to environmental problems [34].
- **Build Capacity Through Training and Education:** Capacity-building initiatives, such as training programs and educational workshops, are essential for equipping professionals with the skills needed to analyze and interpret big data effectively. This approach will enhance technical capabilities and ensure the successful implementation of data-driven strategies across environmental sectors [35].
- **Develop Robust Ethical Frameworks:** To address privacy and security concerns, clear ethical guidelines must be established to regulate data collection, storage, and usage. Transparent governance structures will protect sensitive information, maintain ethical standards, and foster public trust in big data technologies [32].

- **Integrate Big Data into Environmental Policies:** Policymakers should leverage data-driven insights to design adaptive regulations that address emerging environmental challenges. Continuous evaluation of policy outcomes, supported by big data, will ensure that strategies remain effective and responsive to changing circumstances [36].

4. Conclusion

Big data offers unprecedented opportunities to advance environmental sustainability and resource management. Its integration into real-time monitoring systems, predictive modeling, biodiversity conservation, and policy development has transformed how stakeholders address pressing environmental challenges. By enabling data-driven decision-making, big data has the potential to optimize resource utilization, mitigate risks, and promote sustainable practices on a global scale. The transformative impact of big data is particularly evident in its ability to foster collaboration and innovation. By providing a platform for interdisciplinary cooperation, big data empowers stakeholders to tackle complex environmental issues collectively. This collaborative approach is essential for achieving long-term sustainability goals and ensuring resilience against climate change and other global challenges.

However, realizing the full potential of big data requires addressing critical challenges, including ethical concerns, data accessibility, and infrastructure limitations. Investments in technology, capacity building, and governance frameworks are necessary to overcome these barriers and unlock the transformative power of big data. By addressing these challenges, stakeholders can ensure that big data contributes to equitable and sustainable development. As the world continues to grapple with environmental crises, the role of big data will become increasingly vital. Its ability to provide actionable insights and drive evidence-based strategies positions it as a cornerstone of sustainable development in the 21st century. Leveraging big data effectively will not only enhance environmental stewardship but also pave the way for a more resilient and sustainable future.

Compliance with ethical standards

Disclosure of conflict of interest

No conflict of interest to be disclosed.

References

- [1] Wu, J., Guo, S., Li, J., & Zeng, D. (2016). Big data meet green challenges: Big data toward green applications. *IEEE Systems Journal*, 10(3), 888-900.
- [2] Ceccato, P., Fernandes, K., Ruiz, D., & Allis, E. (2014). Climate and environmental monitoring for decision making. *Earth Perspectives*, 1, 1-22.
- [3] Bibri, S. E. (2018). The IoT for smart sustainable cities of the future: An analytical framework for sensor-based big data applications for environmental sustainability. *Sustainable cities and society*, 38, 230-253.
- [4] Oni, O., & Awofala, T. B. (2022). Utilization of wearable technology data in chronic disease management. *World Journal of Advanced Research and Reviews*, 16(03), 1189-1195. <https://doi.org/10.30574/wjarr.2022.16.3.1208>
- [5] Syed, D., Zainab, A., Ghrayeb, A., Refaat, S. S., Abu-Rub, H., & Bouhali, O. (2020). Smart grid big data analytics: Survey of technologies, techniques, and applications. *IEEE Access*, 9, 59564-59585.
- [6] Aboagye, E. F., Borketey, B., Danquah, K., & Borketey, D. A PREDICTIVE MODELING APPROACH FOR OPTIMAL PREDICTION OF THE PROBABILITY OF CREDIT CARD DEFAULT.
- [7] Olutimo, A. L., Oni, O. J., & Ayeni, O. C. ULTIMATE BOUNDEDNESS RESULT FOR A CERTAIN SYSTEM OF THIRD ORDER NONLINEAR DIFFERENTIAL EQUATIONS.
- [8] Bibri, S. E. (2019). The sciences underlying smart sustainable urbanism: unprecedented paradigmatic and scholarly shifts in light of big data science and analytics. *Smart Cities*, 2(2), 179-213.
- [9] Huntingford, C., Jeffers, E. S., Bonsall, M. B., Christensen, H. M., Lees, T., & Yang, H. (2019). Machine learning and artificial intelligence to aid climate change research and preparedness. *Environmental Research Letters*, 14(12), 124007.

[10] Ponnusamy, V. K., Kasinathan, P., Madurai Elavarasan, R., Ramanathan, V., Anandan, R. K., Subramaniam, U., ... & Hossain, E. (2021). A comprehensive review on sustainable aspects of big data analytics for the smart grid. *Sustainability*, 13(23), 13322.

[11] Nitoslawska, S. A., Wong-Stevens, K., Steenberg, J. W., Witherspoon, K., Nesbitt, L., & Konijnendijk Van Den Bosch, C. C. (2021). The digital forest: Mapping a decade of knowledge on technological applications for forest ecosystems. *Earth's Future*, 9(8), e2021EF002123.

[12] Needham, J. (2013). Disruptive possibilities: How big data changes everything. " O'Reilly Media, Inc.".

[13] Franchetti, M. J., & Apul, D. (2012). Carbon footprint analysis: concepts, methods, implementation, and case studies. CRC press.

[14] Asch, M., Moore, T., Badia, R., Beck, M., Beckman, P., Bidot, T., ... & Zacharov, I. (2018). Big data and extreme-scale computing: Pathways to convergence-toward a shaping strategy for a future software and data ecosystem for scientific inquiry. *The International Journal of High Performance Computing Applications*, 32(4), 435-479.

[15] Sishodia, R. P., Ray, R. L., & Singh, S. K. (2020). Applications of remote sensing in precision agriculture: A review. *Remote sensing*, 12(19), 3136.

[16] Xu, Q., Liu, R., Chen, Q., & Li, R. (2014). Review on water leakage control in distribution networks and the associated environmental benefits. *Journal of Environmental Sciences*, 26(5), 955-961.

[17] Oduokpaha, G. E., Felix, G. A., Okoroafor, I., Adie, F. U., Oworah, S. G., Opoola, J. A., & John, O. (2022). Antibiotic Resistance: Survival Mechanisms of Gram-Negative Bacteria against β -Lactams.

[18] Ionescu, L. (2021). Transitioning to a low-carbon economy: Green financial behavior, climate change mitigation, and environmental energy sustainability. *Geopolitics, History, and International Relations*, 13(1), 86-96.

[19] Qi, D., & Majda, A. J. (2020). Using machine learning to predict extreme events in complex systems. *Proceedings of the National Academy of Sciences*, 117(1), 52-59.

[20] Adie, F. U., Oduokpaha, G. E., Oworah, S. G., & Joseph, O. J. Evaluation of Antibiotic Resistance Pattern of Bacteria Obtained from Surfaces of Automated Teller Machines in Calabar South, Cross River State, Nigeria.

[21] Kalair, A., Abas, N., Saleem, M. S., Kalair, A. R., & Khan, N. (2021). Role of energy storage systems in energy transition from fossil fuels to renewables. *Energy Storage*, 3(1), e135.

[22] Peters, D. P., Bestelmeyer, B. T., & Turner, M. G. (2007). Cross-scale interactions and changing pattern-process relationships: consequences for system dynamics. *Ecosystems*, 10, 790-796.

[23] Koh, L. P., & Wich, S. A. (2012). Dawn of drone ecology: low-cost autonomous aerial vehicles for conservation. *Tropical conservation science*, 5(2), 121-132.

[24] Ekanem, A. M., Udoфia, E. A., Oloyede, I. P., Ekrikpo, U. E., & George, K. E. (2022). Prevalence and Determinants of the use of Enema in under-five children in Akwa Ibom State. *Ibom Medical Journal*, 15(2), 108-115.

[25] Christin, S., Hervet, É., & Lecomte, N. (2019). Applications for deep learning in ecology. *Methods in Ecology and Evolution*, 10(10), 1632-1644.

[26] Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. W.W. Norton & Company.

[27] Bibri, S. E., & Krogstie, J. (2017). Smart sustainable cities of the future: An extensive interdisciplinary literature review. *Sustainable cities and society*, 31, 183-212.

[28] Turner, W., Rondinini, C., Pettorelli, N., Mora, B., Leidner, A. K., Szantoi, Z., ... & Woodcock, C. (2015). Free and open-access satellite data are key to biodiversity conservation. *Biological Conservation*, 182, 173-176.

[29] Kitchin, Rob. The data revolution: Big data, open data, data infrastructures and their consequences. Sage, 2014.

[30] Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., ... & Townshend, J. R. (2013). High-resolution global maps of 21st-century forest cover change. *science*, 342(6160), 850-853.

[31] George, K. E., Okon, B. E., Okpara, C. K., Clement, E. I., Akpabio, I. O. I., Asanana, Q. E., ... & Ekanem, A. M. (2021). Fruit Ripening Methods and Knowledge of Health Effect of Use of Calcium Carbide in Ripening Fruits among Fruit Sellers in Uyo, Nigeria. *Journal of Advances in Medicine and Medical Research*, 33(21), 72-83.

[32] Richards, N. M., & King, J. H. (2014). Big data ethics. *Wake Forest L. Rev.*, 49, 393.

- [33] Purcell, B. (2013). The emergence of "big data" technology and analytics. *Journal of Technology research*, 4, 1.
- [34] Zapp, M. (2022). Universities, Sustainable Development and the 'Knowledge Turn' in Global Governance—Causes, Mechanisms and Risks. In *Geopolitical Transformations in Higher Education: Imagining, Fabricating and Contesting Innovation* (pp. 143-161). Cham: Springer International Publishing.
- [35] Ghaziani, S., Ghodsi, D., Dehbozorgi, G., Faghih, S., Rajabpour Ranjbar, Y., & Doluschtz, R. (2021). Comparing lab-measured and surveyed bread waste data: A possible hybrid approach to correct the underestimation of household food waste self-assessment surveys. *Sustainability*, 13(6), 3472.
- [36] Karaman, A. S., Kilic, M., & Uyar, A. (2020). Green logistics performance and sustainability reporting practices of the logistics sector: The moderating effect of corporate governance. *Journal of Cleaner Production*, 258, 120718.