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Abstract

This study developed a novel intrusion detection system (IDS) for cloud computing using artificial neural networks
(ANNs) and machine learning techniques. The proposed IDS uses an adaptive architecture capable of detecting
malicious activities within a cloud computing environment. To process and optimize the data, Adam optimization
techniques were employed, and MiniMaxScaler was used to normalize the data for training. The model was designed
using the TensorFlow framework for ANNs, and the LSD methodology was employed in the development. The training
was conducted using the University of New Brunswick Intrusion Detection Systems dataset, which had been
preprocessed. Results indicate that the proposed architecture was highly effective in detecting various attacks, with low
false-positive and false-negative rates. The training and validation accuracies were 99.7% and 99.9%, respectively,
using this method. This approach can automatically detect the nature of attacks, saving time and resources.

Keywords: (ABS) Artificial Neural Network; Intrusion Detection System; Deep Learning; Model and Cloud Computing

1. Introduction

Due to the tremendous growth witnessed in the field of information technology IT, cloud computing has become the
first choice of every IT organization because of its distributed and scalable nature. Some see the cloud as a novel
technical revolution, while others consider it a natural evolution of technology, economy, and culture. Nevertheless,
cloud computing is an important paradigm that is flexible, cost-effective, and an efficient delivery platform for providing
consumer and business IT services over the Internet [1].

Considering the benefits of cloud computing, its wide-ranging appeal is not surprising. However, this new approach
does raise some concerns. Foremost among them is securing data in the cloud. Security controls in cloud computing
such as cyber threats, advanced threat detection, real-time protection, enterprise security, and vulnerability
management are by far the most part to be considered in IT environments [1]. Cloud computing presents new risks and
threats to an organization because of cloud services, operational models, and technologies that enable these services.

Attackers can compromise the integrity, confidentiality, and availability of resources, data, and virtualized
infrastructure of cloud computing systems, which may give birth to new types of attacks [2]. The problem can be worse
and more critical when a cloud with massive storage capacity and computing power is attacked by intruders that are
present in the cloud environment.
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In 2017, Equifax, a US-based consumer credit reporting agency became a victim of a cyber-attack when the problem of
identity theft for 145.5 million U.S. consumers arose. The hackers stole personally identifiable information including
names, social security numbers, and birth dates of consumers, and left no evidence of unauthorized activity. This was
considered to be one of the major breaches that happened in history, costing the company $275 million in loss [4]. Data
in the cloud is viewed as big data that has high volume, high velocity, and high variety. Intruder attacks can be detected
and restricted using several mechanisms like cryptography and authentication, IDS is one of these (Jangla & Amne,
2015). In today's era of hackers, it becomes very crucial to design the system much stronger to protect the resources,
infrastructure, and valuable data from intruders. Here, IDS plays a significant role in securing customers' data,
resources, and assets in the cloud against security threats. It is one of the advanced security solutions capable of
protecting network data from malicious activities. Therefore, IDS should be designed and deployed such that it can
uncover all cloud-related attacks over the entire cloud network with a minimum false alarm rate as possible. Since cloud
computing is different from traditional computer systems, specific attacks such as Denial of service attacks, insider
attacks, man-in-the-middle, and cloud malware injection attacks must be efficiently detected [5].

2. Literature survey

A cloud-based IDS framework has been proposed by [6] the cloud IDS CIDS involves two types of nodes. Cooperative
nodes and Central coordinator. A dedicated network IDS NIDS is deployed on a virtual switch VM at the cloud entry
point. This monitors the incoming network packets. The author proposed to use the SNORT tool for this function. The
host VMs are monitored by individual HIDS. An open-source tool HIDS was used.

The alerts from the NIDS and HIDS are collected by the central coordinator. The alerts are in the intrusion detection
message exchange format IDMEF. The central coordinator is the heart of the framework and is responsible for
monitoring, managing, analyzing, and correlating the alerts hence creating comprehensive information on attacks
within the public cloud. The central coordinator reports the comprehensive attack information to the user who can then
initiate required preventive measures to contain the attack. However, the drawback of this scheme can be a single point
of failure at the main central coordinator.

Shenfield, Day, and Ayesh [7] presented a naive approach for the detection of unwanted traffic using ANN that is suitable
for use in deep packet inspection-based IDS. The inputs range from normal benign network traffic which includes
images, videos, dynamically linked libraries, logs, and music files, including the malicious shell code obtained from
online vulnerability exploit dB, experimentally proved that the proposed system can classify the traffic accurately. The
proposed malicious network traffic detection system can remarkably improve the utility of IDS applied to both
conventional system traffic analysis and traffic analysis of cyber-physical systems like smart grids. The detection rate
0of 98% and 2% false alarm rate. Various intrusion detection schemes and methods that try to detect intrusion in one
way or the other were compared by Prasad et al., (2015). From the comparison, it is evident that many IDS techniques
depend on high time, memory, and cost requirements apart from advantages

Liu, Liu, and Zhao [8] established an intrusion detection approach based on a convolutional neural network (CNN) and
evaluated the IDS model. In the training phase, it generated datasets by extracting living examples from the KDD
Cup1999 dataset and did two depersonalization processes on test data to bring more convenient convolutional neural
network learning. In the test phase, it extracted 10 test datasets and tested their performance. Compared with other IDS
classifiers, the intrusion detection model based on CNN has the highest detection rate and precision. The feasibility of
applying convolutional neural networks in highly-intruded detection has been proved. The detection rate observed was
97.7% with a false alarm rate of 0.099958%.

Ingre [9] analyzed the efficiency of the NSL-KDD dataset by evaluating it with the help of an Artificial Neural Network.
In both the binary class and the five-class classification (type of attack) the results were obtained and analyzed
according to several performance parameters with better accuracy. The detection rate was 81% for intrusion detection
and 78% for attack-type classification using the NSL-KDD dataset. A higher detection rate was observed when the
proposed scheme was compared with the existing scheme for both class classifications.

An IDS for cloud computing using neural networks and artificial bee colony optimization algorithm has been developed
[10]. The IDS was based on the combination of multilayer perceptron (MLP) networks artificial bee colony (ABC) and
fuzzy clustering algorithm. Normal and abnormal traffic pockets were identified by the multilayer perceptron, while the
MLP training was done by the ABC algorithm by optimizing the values of linkage weight and biases. Fayaz (2017)
presented the usage of intrusion detection and intrusion prevention techniques in the Cloud. The study specifies the
locations in the Cloud where IDS/IPS can be positioned for efficient detection and prevention of attacks. The author
listed some current solutions to mitigate the risks.
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Research suggests that anomaly-based IDS can identify new network threats [11]. This used a real-time big data stream
processing framework, Apache Storm, for the implementation of network IDS. The IDS was tested and evaluated using
the Knowledge Discovery and Data Mining 1999 (KDD’99) dataset. Hatef et al. [5]. developed a hybrid intrusion
detection approach in cloud computing. An open-source cloud computing environment called Eucalyptus was used to
implement this method. A training dataset and NSL-KDD set were used. The proposed method shows that intrusion
coverage, intrusion detection accuracy, reliability, and availability in cloud computing systems are considerably
increased and false warnings are significantly reduced.

An intelligent approach, based on the collaboration of IDS systems, and Multi-Agent Systems has been proposed [12].
The authors have designed seven different agents for both mode host and network which work, operate, run
independently, and communicate with each other to check and identify all malicious attacks in the cloud computing
system. This approach provides an intelligent self-administered and fault-tolerant IDS with continuous execution time
and minimal human intervention with the use of multi-agent security systems.

Rani [13] emphasized existing methods of IDS based on soft computing techniques, data mining, and other approaches.
The entire survey is categorized based on detection approaches such as signature and anomaly detection to get a vivid
analysis of the type of attack to be detected, the advantages of using the approach, and loopholes that existed in
implementing the approach in a tabular manner. As per the survey conducted, an anomaly-based detection approach is
adopted by many researchers to detect both known and unknown attacks by monitoring network traffic. They have
been capable of detecting both network and host-based attacks and that too old ones and the latest ones whose
signatures are not present (Sharma & Kumar, 2019). that are 2.3 percent and 1.5 percent higher than the common base
result in face and mask detection.

3. Methodology

Since the late 1980s research in the field of intrusion detection and system security has been held all around the world.
Various approaches and techniques have been suggested and some are currently being implemented for intrusion
detection. The main aim of implementing IDS with the help of ANN is to incorporate a system that contains an intelligent
agent that can bring out latent patterns to classify normal and abnormal records, along with the capability to generalize
records belonging to the same class.

3.1. Proposed Method

The development of this system will be broken down into several sections to simplify the development of the project.
The proposed method would be an Artificial Neural Network (ANN) that is made of an AutoEncoder and developed
using the architecture discussed in section 3.3 using the agile Lean Software Development (LSD) software methodology
which is center focused methodology that wastes no time in none essential parts of the research. These three things
(ANN, LSD, and System Architecture) come together to form the basis of the program being developed.

3.2. System Architecture

The system presented in this paper is a machine-learning application for detecting several cloud intrusion attacks using
Artificial Neural Networks (ANN). The architecture of the system is shown in Figure 1. The system starts by pulling data
from the storage repository which is a directory holding the dataset, the dataset has 15 classes to predict, Label BENIGN
being safe and the malicious classes being Label_Bot, Label_DDoS, Label_DoS GoldenEye, Label_DoS Hulk, Label_DoS
Slowhttptest, Label_DoS slow loris, Label_FTP-Patator, Label_Heartbleed, Label_Infiltration, Label_PortScan, Label_SSH-
Patator, Label_Web Attack Brute Force, Label_Web Attack Sql Injection and Label_Web Attack XSS. The dataset is then
processed by removing the null values and normalizing the values using MinMaxScaler this helps in keeping the values
within a range and reducing outliers. As machine learning models are prone to overfitting, we then employ k-folds for
creating a train and validation set this way the accuracy is calculated per fold and this way the accuracy of each comes
to form the total, and if one-fold performs too well we know the model is overfitting to that dataset. Once we have our
train and validation set, we then create our ANN, the ANN is then trained using Adam optimizer with a learning rate of
0.001, and the model is then trained and exported with the learned information. This architecture was modified from
the research in (Liu, Liu, & Zhao, 2017) by including k-folds and encoder and decoder system of the ANN instead of the
CNN used in their work.
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Training Model

Save Trained
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Figure 1 Architecture of the Proposed System adapted from (Liu, Liu, & Zhao, 2017)

3.3. ANN AutoEncoder

Autoencoding is an Artificial Neural Network data compression algorithm where the compression and decompression
functions are data-specific, lossy, and learned automatically from train datasets rather than engineered by a human.

Encoder-Decoder models are a family of models thatlearn to map data points from an input domain to an output domain
via a two-stage network: The encoder, represented by an encoding function z = f(x), compresses the input into a latent-
space representation; the decoder, y = g(z), aims to predict the output from the latent space representation.

3.4. System Modelling

This section discusses the behavior of the system its environment and its internal components. The Unified Modelling
Language (UML) due to its vast library of modeling tools and diagrams from use case modeling, sequence, class, entity
relation, activity modeling, etc.; It is the technique chosen for this section and three techniques were chosen to model
three different aspects of the computer system which are the use case diagram to show the system interaction with the
external environment, the activity diagram that models how each action in the system is handled and a sequence
diagram that shows how the internal components of the system interact with each other.

3.5. Use case Diagram

The use case diagram is a high-level diagram that highlights the system requirements provided to various users of the
system. Figure 2 shows the use case diagram of the system which has a single user who can view the attack data and the
result from the model’s prediction.
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Figure 2 Use case Diagram of the Intrusion System

3.6. Usage Activity Diagram

This activity diagram, Figure 3, shows the deployment flow of the model, the model has to be loaded from this and
receive input data, in this case, the attack data. The model then processes the attack to make a prediction and lastly

yields the result.
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Figure 3 Activity Diagram of the Intrusion System

3.7. Development Activity Diagram

Activity diagrams are used to serve as an advanced flowchart that shows how the system responds to actions or event
triggers. They are designed to model the complex transitions in the system from the start of an action to the result or
output. Figure 4 shows the activity diagram of the proposed system which starts with loading the model from disk and
performing data processing by dropping null values, this balanced data is visualized to view if there were other
anomalies. The data set is segmented into k-folds this way we reduce the chances of overfitting, these folds were then
stored in memory as a train and validation set. The train and validation sets are then normalized for training. The
training is then performed by the neural network’s encoder and decoder and then the model is saved for usage.
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Figure 4 Activity Diagram of the Model Development

3.8. Sequence Diagram

The sequence diagram unlike the use case and activity diagram models the internal behaviour of the system which is
the interaction between subsystems of the software and process in the application, it gives a very good low-level
overview of what is happening within the system. Figure 5 shows the sequence diagram of the system and its internal
components, when the system runs the dataset is loaded from the disk for data processing which is streamed into
segments to create k-folds from which these folds are normalized and used by the encoder to train a decoder and the
smarter the decoder gets the smart the model gets when we achieve a decent result, we can then return the built model
for prediction.
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Figure 5 Sequence Diagram of the Model Development

3.9. System Analysis

This system ANN is built to run on a very low computing system and cross-platform on Linux, Windows, and MacOS that
meets the minimum system specification, and has Python and TensorFlow installed. The system was tested on a MacOS
Yosemite laptop and a Windows 10 computer with a minimum RAM of 1 gigabyte and a minimum storage requirement
of 2 gigabytes. The specifications are shown in detail in Table 1.

Table 1 Test Device Specification

Requirement Minimum Device Specification
Specification Windows | Mac OS
System OS Windows /MacOS | 10 Yosemite
Memory (RAM) Minimum: 1 GB 16 GB 8 GB
Storage Capacity 2GB 2TB 256 GB
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4. Result and discussion

The application was built using Python programming language. The application was deployed on a Windows computer
and tested on Mac and Linux-based systems. The application is a desktop application that predicts the type of network
attack being carried out by an attacker on a network. TensorFlow is an open-source end-to-end machine learning
platform powered by Google which serves as the machine learning backend for this research using Python programming
language.

4.1. Dataset

The dataset used during this process is from the University of New Brunswick IDS dataset. The program runs by first
loading the model to memory to position it for prediction and then loading it into a model variable, when the model is
done loading predictions can be performed. The prediction returns an array of results these results represent the
probability of it being either of the classes, and the class index with the highest result represents the predicted class.
Once the index is obtained, the type of intrusion is known. During the development of this program, Tensorflow was
used and this is an open-source end-to-end machine learning framework developed and backed by Google used to
develop top-of-line Machine Learning software. Tensorflow provides a collection of workflows to develop and train
models using Python or JavaScript, and to easily deploy in the cloud, in the browser, or on a device no matter what
language you use. It was chosen because of its robust nature and flexibility for research papers.

Numpy, Pandas, and MatplotLib are the data processing libraries used for this research paper, python does not have
traditional arrays so Numpy provides that with its suite of rich array functions, Pandas was used for data processing of
the dataset and MatplotLib serves as a great python data visualization tool.

4.2. Data Visualization Results

During the development process data bins were exported for each of the fields of the dataset to view the frequency of
the fields and find the anomalies before data processing this way, we can remove missing values and normalize the

dataset as shown in Figure 6.

-

LL

LL
|

Figure 6 Data Bins of the Dataset
The normalized data is summarized in Table 2 where there is an average of 783966 rows of data in the 94 columns and

also the mean, minimum, max, and standard deviation of each field. The frequencies are also displayed this way we
know what is within the 25th, 50th, and 75th percentile.
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Table 2 Summary of Normalized Data

Destination
Port

Flow Duration

Total
Packets

Fwd

Total Backward
Packets

Total Length of
FWD Packets

Total Length of
BWD Packets

Count

783966.000000

7.839660e+05

783966.000000

783966.000000

7.839660e+05

7.839660e+05

Std

13100.767048

4.001842e+07

643.637420

858.662197

6.881230e+03

1.9304080e+06

Min

0.000000

+2.000000e+00

1.00000

0

0.000000

0.000000e+00

0.000000e+00

25%

80.000000

5.9000000e+01

1.00000

0

1.000000

2.000000+00

0.000000e+00

50%

80.000000

6.039700e+04

3.00000

0

2.000000

2.6000000e+01

7.6000000e+01

75%

543.000000

1.200000e+08

214125.00000

283900.000000

2.866110e+06

6.29600e+08

4.3. Structure of the Developed Model

The model was developed using keras tensorflow API, this way neural network layers could be easily stacked. In this
case, we use batch normalization layers to make the training faster and balanced by normalizing the values and by
recentering and rescaling the values through the training iterations.

Overfitting is also resolved using batch normalization but this model goes a step further by adding dropout layers, these
dropoutlayers turn off certain neurons at certain positions during the training and this reduces the likelihood of a model
memorizing the data rather than learning the patterns of the dataset.

In [25]: model - create_ae_mlp(**params)

model. summar

Model: "model 1"

Layer (type) Output Shage Param # Connected te

input_2 (InputLayer) [(Mone, 78)] ]

batch_normalization_§ (BatcnNor (Mone, 78) 312 input_z[@][e]

gaussian_noi! (GaussianNoise (None, 78) 2 batch_normalization_s[@](@]

dense_6 {(Dense) (None, 96) 7584 gaussian_noise_1[@][@]

batch_normalization_g (BatcnNor (Mone, 96) 384 dense_s[@][2]

activation_6 (Activation) (None, 96) 2 batch_normalization_9[a](@]

concatenste_1 (Concatenate) (None, 174) ) batch_normal n_s[e][e]
activation_s[@][e]

batch_normalization_11 (BatchNo (Mone, 174) 696 concatenate_1[@][a]

dropout_8 (Dropout) (None, 174) ) batch_normalization_11[e][@]

dense_8 (Dense) (None, 896) 156500 dropout_9[e][0]

batch_normalization 12 (Batcnlo (None, 896) 3554 dense_8[B][@]

activation 8 (Activation) (None, 895) 8 batch_normalizetion_12[@][8]

dropout_18 (Dropout) (None, 895) 8 activation 8[8][@]

dense 5 (Dense) (None, 448) 401856 dropout_18[@][8]

batch_normalization 13 (BatchNo (None, 448) 1792 dense_S[@](e]

activation 8 (Activation) (None, 448) 8 batch_normalizetion_13[@][8]

dropout_11 (Dropout) (None, 448) 8 activation_2[2][@]

dense_16 (Dense) (None, 448) 201152 dropout_11[@][8]

batch_normalization_14 (BatchNo (None, 448) 1792 dense_l1a[2](0]

dropout_7 (Dropout) (None, 96) ) activation 6[2][@]

activation 10 (Activation) (Nene, 443) ] batch_normalizstion_14[@](2]

decoder {(Dense) (Nene, 78) 7566 dropout_7[@][e]

dropout_12 (Dropout) {Mone, 443) ] activation_la[@][@]

dense_7 {(Dense) (Nene, 26) 7584 decoder[@][e]

dense_11 (Dense) (Nene, 256) 114344 dropout_12[27[@]

batch_normalization 1@ (BatchNo (Mone, 96) 284 dense_7[@][@]

batch_normalization 15 (BatchNo (Mone, 256) 1024 dense_11[2110]

activation 7 (A tion) (Nene, 96) ] batch_normalization_1@[@][2]

activation 11 (Activation) (Nene, 256) ] batch_normalization 15[@](2]

dropout_8 (Dropout) {Mene, 96) 2 activatien_7[@1[@]

dropout_13 (Dropout) (None, 256) 8 activation_l1[@][2]

ae_action (Dense) {Hone, 15) 1455 dropout_S[81[8]

action (Dense) {Hone, 15) 3855 dropout_13[@1[@]

Total params: 912,764

Trainable pa

Hon-trainanle param

rams: 987,758

st 4,984

Figure 7 Structure of the Model
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Lastly, we have a total of 912,764 parameters within the model out of which 907,780 are trainable and 4,984 as shown
in Figure 7 This makes the model highly trainable and trains within 1 hour on a 32gig Windows 10 laptop with 6gig of
NVidia GTX 1060 graphics memory.

4.4. Train Accuracy Result

After the model was built it was trained and evaluated using the training results accuracy parameter, this way we can
monitor the training and the trends of the accuracy and the loss values, the aim is to keep the accuracy high (green
graph) and the loss low (red line) using TensorFlow’s early stopping we can stop the model when we have a comfortable
loss and accuracy. The model was trained for 20 epochs which is each cycle the model gets to see the dataset during
training.

oe

o4

oz

oa s 5o 7’5 100 17

oo

Figure 8 Accuracy Result for Training

4.5. Validation Accuracy Result

Training result alone is not enough to determine our accuracy hence we use a validation set to see if our model still
performs well on data, it was not exposed to during the training of the model. Our validation accuracy stands at 99.96%
which is very close to our training accuracy at 99.97%. The training and validation process can be seen in Figure 9 and
Figure 10.

Validation Accuracy and Loss

08

0.6

04

02

00

0.0 25 5.0 15 10.0 125 150 175

Figure 9 Validation Result from Training
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Epoch 9/

L1RDS/1185 [zmsmsmses sss=sa=z| - 1005 Lins/step - loss: 8.8084 - g action loss: 8.8873 - action loss: 0.8831 - 2
& artion AIC: 0.5904 - action AUC: 29997 - val loss: 0.2887 - val e action loss: 8.8857 - val action loss: £.2606 - val ae
ton AUC: 8,999 - va_action AUC: 9.935

Epoch 18/28

11805/10805 [= =] - 1365 Lns/step - loss: 6.8163 - ae_action loss: 8.8673 - action loss: 8.6831 - 2
& artion AIC: 0.5904 - action AUC: 2,999 - vl loss: 0886 - vl ae action loss: 8.8857 - val action loss: 6.0863 - val ae ¢
ton AUC: 83997 - val_sction AUC: .956)

Epoch 11/26

11025/11625 | =e==za=e | - 130 1lng/step - loss: 88081 - a2 action loss: 8.8871 - action loss: 0.8831 - 5
& action AC: 08995 - action AUC: 2.9997 - val loss: .07 - vel ae action loss: 88038 - val action loss: €.0018 - vel ae ¢
ton AUC: 89996 - val_sction AUC: .9085

Epach 12/28

11R05/11825 [z=zmz=e=s ===<| - 140 Lins/step - loss: 8.8180 - a2 action loss: £.0878 - action loss: 0.0820 - 2
& action AC: 88994 - action AUC: 8.9097 - vel loss: .1231 - vel ae action loss: 88656 - val action loss: 81075 - vel ae &
con AUC: 8,999 - val action AUC: 2,045

Epach 13/28

185/11805 [mmemmm=s ====] - 1335 Uns/step - loss: 2.0898 - ae action loss: 8.8078 - action loss: 0.8800 - &
& action AUC: 85994 - action AUC: 9.9097 - vl loss: 8.8036 - velse action loss: 88038 - val action_loss: 8.0678 - val ae
Con AUC: 8.9997 - el action AUC: 2,009

Epoch 14/28

L1005/11825 [z=zmz=e=s ===<| - 138 Lins/step - loss: 8,067 - a2 action loss: £.0069 - action loss: 0.0428 - 2
e action AC: B.8984 - sction AUC: 8.9097 - val_loss: .1476 - vel se action loss: 88862 - val action Joss: 81414 - val ae ac
ton AUC: 8,999 - val action AUC: 25404

Epoch 15/28

195/11005 [===== =] - 1375 Lms/step - loss: @.0895 - a_action loss: 8.0068 - action loss: 0.0007 - 3
e action AC: 8,898 - sction AUC: 8.9097 - val_loss: 8.8165 - vel se action loss: 8.8857 - val action oss: .18 - val ae ac
ton AUC: 8,999 - val_action AUC: 8.9075

Epach 15/28

1805/11805 [===== =] - 145 Lns/step - loss: 6.08%4 - ae_action loss: 8.8667 - action loss: 8.0807 - 2
& artion AIC: 0.5995 - action AUC: 2.9997 - val loss: 0.1268 - val e action loss: .8856 - val action loss: 8.1050 - val ae &
ton_AUC: 8,999 - va_action AUC: 2.2453

Epoch 17/28

11R05/11805 [====== <] - 1335 10ns/step - Joss: 2.6893 - 2 action loss: €.8867 - action loss: 0.086 - 2
& artion AUC: 05995 - action AUC: 2.9997 - val loss: 0.1957 - val e action loss: .0855 - vel action loss: 6.1963 - val ae
ton AUC: 89996 - val_sction AUC: 2.9305

Epach 1829
11025/11825 [=
& action AC: 8520
ton AUC: 8,999 - val_sction AUC: 2.9397
Epuch 13/28
1825/10805 [=
& action AC: 8
Clon AUC: 8,999 - val action AUC: 29274

Epoch 28/28

1825/10805 [= <] - 1305 L3ns/step - Joss: 0.0880 - a2 action loss: £.0065 - action loss: 0.8627 - 2
& artion AUC: 8.8995 - action AUC: 8.9097 - vl loss: 8.1886 - vel se action loss: 8.885¢ - val action loss: 8.1750 - val ae ac
Con AUC: 89997 - val action AUC: 0.0438

=] - 1365 10ns/step - Joss: 0.8893 - a2 action loss: €.9866 - action loss: 0.0826 - 3
5 - action A0C: 2.9987 - val loss: 8,188 - vel a action loss: 8.885¢ - val action loss: 8,136 - val i

=] - 1305 Lins/step - loss: 2,689 - ae sction loss: 8.8069 - action loss: 0.8807 -
5 - action A0C: 2.9987 - val_loss: 82756 - vl ae_action_loss: 8.8853 - val action loss: 8.2783 - val e ¢

Figure 10 Results of Data Trends During Training

4.6. Attack Prediction Result

After the model is trained it now fits to make predictions, the predictions are returned as arrays shown in cell 79 from
this, we can now return the list of results from which we can then get the row-specific results in cell 80. This final array
isalist of probabilities of an attack being in a particular class in this case the highest value is in the 11th index 0.9948732
as shown in Figure 11.
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In [79]: result = model.predict(valid_df[col])

[[1.44571066e-04 2.42732199¢-07 2,29500259¢-08 ... 2,44974494e-02
.218935982-05 2.19464302e-04)

[1.27428770e-03 2.00432919¢-06 4.57116622e-10 ... 6.83111580e-07

[

o = o

,25150903e-11 3.57130102e-06]
.29640102¢-04 5.88160617¢-07 8.17678558e-11 ... 1.93004155e-07
,99605824e-12 1,810913900e-06]

00 =

[E

.00000000e+00 8.63266663€-12 7,7832233%-13 ... 1.085211195¢-09
.86554329e-12 1.,92840105€-10]

.000000002+00 1.10411385e-11 2.379%6444e-13 ... 1.07142950e-09
.56305694e-12 1,86752391e-16]

.99999642e-01 4.36136744€-08 1.60192401e-10 ... 4.54987941e-07
.58858114e-07 1.63611674e-06] ]

= oo = oy

In [8@]: print(result[e][e])

[1.4457107e-04 2.4273220e-07 2,29500260-08 3.6162460e-06 3.3025008¢-06
1.4811909¢-085 1.0588451e-85 1.5106481e-07 1.9169594e-10 7.4989863e-09
1.6343594e-04 9.9448723e-01 2.4497449e-02 5.2189360-05 2.1946430e-04]

Figure 11 Attack Prediction Result

5. Conclusion

From the training and validation results during this research it is obvious that machine learning in particular ANN can
be used in intrusion detection. Not only in the detection but also the exact type of intrusion being carried out and this
would go a long way in helping software engineers to know the exact remedy or deterrent to use.

The first objective was to design an architecture for cloud intrusion detection which was developed based on ANN using
AutoEncoder shown in Figure 3.1. During the research process, the second objective was met due to extensive and
rigorous research as documented in the literature review where it was noticed that an ANN with an AutoEncoder
approach had not been documented.

The developed model can detect attacks automatically from network data supplied to the model and make the
appropriate prediction with 99.96% accuracy which covers the third objective and the model tells the exact nature of
the attack which helps in reducing response time addressing the fourth objective.

Recommendation

The following are recommendations made due to the discoveries during this study.

e Intrusion data from more attacks on cloud service providers should be made public to make machine learning
models more robust.

e Grants can be given by the government to support researchers in this domain so that resources necessary to
gather data and build models will be less of a burden on the developer.

Future work

This work can be improved in future work in the field. I hope that all the solutions provided in this work will enable
researchers to have more efficient and influential work regarding new proposals on IDS in a cloud computing
environment. To expand human knowledge there is a need to highlight some suggestions based on this research. The
suggestions for further studies are as follows:

e Further research can be carried out using Caffe2 from Facebook or Azure ML from Microsoft.

e Data sources from less developed countries can also be added to improve the performance of the model in such
regions.
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