

Tafasitamab and Lenalidomide combination therapy for transplant-ineligible large B-cell lymphoma patients: A new standard of care

Uche Philip ^{1,*}, Ayodele James Olowokere ² and Umobit Ini-obong Deborah ³

¹ Department of Haematology and Oncology, Union Hospital affiliated to Fujian Medical University, Fujian Medical University, China.

² Department of Chemistry and Biochemistry, University of Mississippi, USA.

³ Department of Biology, Georgia State University, USA.

World Journal of Advanced Research and Reviews, 2024, 24(02), 2205–2223

Publication history: Received on 09 October 2024; revised on 22 November 2024; accepted on 24 November 2024

Article DOI: <https://doi.org/10.30574/wjarr.2024.24.2.3581>

Abstract

Large B-cell lymphoma (LBCL) remains a therapeutic challenge, especially for patients ineligible for stem cell transplantation (SCT) due to age, comorbidities, or refractory disease. For this population, treatment options that are both effective and tolerable are critically needed. The combination of tafasitamab, an anti-CD19 monoclonal antibody, and lenalidomide, an immunomodulatory agent, has emerged as a promising regimen. This synergistic approach leverages complementary mechanisms of action to induce durable responses in high-risk patients. This article reviews the therapeutic potential of tafasitamab and lenalidomide, analyzing pivotal clinical trial data such as the L-MIND study, which demonstrated significant overall response rates (ORRs) and prolonged remissions, even in heavily pretreated individuals. The combination shows efficacy across various LBCL subtypes with a manageable toxicity profile, primarily consisting of neutropenia and infections, which are generally controllable with supportive care. By evaluating the regimen's safety and efficacy, this article positions tafasitamab-lenalidomide as a viable and superior alternative to traditional chemotherapies, particularly for SCT-ineligible patients. The findings underscore its potential to redefine the standard of care for this patient subset by offering an optimal balance of efficacy and tolerability. Future research directions, including combinations with other novel agents and the role of biomarkers, are also explored. The accumulating evidence strongly supports the integration of this regimen into routine clinical practice, promising improved outcomes for a traditionally underserved population.

Keywords: Tafasitamab; Lenalidomide; Large B-Cell Lymphoma (LBCL); Stem Cell Transplantation-Ineligible Patients; Combination Therapy; L-MIND Study; Immunotherapy; CD19

1. Introduction

1.1. Overview of Large B-Cell Lymphoma (LBCL)

Large B-cell lymphoma (LBCL) represents a group of aggressive non-Hodgkin lymphomas (NHLs) characterized by the malignant proliferation of large B-cells [1]. Diffuse large B-cell lymphoma (DLBCL) is the most common subtype, accounting for approximately 30-40% of all NHL cases worldwide [2]. LBCL primarily affects older adults, with a median age at diagnosis of 65 years [3]. While the R-CHOP regimen (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone) remains the standard frontline therapy, a significant proportion of patients, particularly those ineligible for stem cell transplantation (SCT), fail to achieve durable remissions and face poor prognoses [2, 3].

* Corresponding author: Uche Philip

1.2. Introduction to Tafasitamab and Lenalidomide

Tafasitamab is a humanized Fc-enhanced anti-CD19 monoclonal antibody engineered to potentiate antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP) against malignant B-cells [4]. By targeting CD19, a pan-B-cell surface antigen ubiquitously expressed in LBCL, tafasitamab directly induces apoptosis and recruits immune effector cells to mediate tumor cell killing [5].

Lenalidomide is an oral immunomodulatory drug that enhances the activity of natural killer (NK) cells and T-cells, inhibits angiogenesis, and modulates the tumor microenvironment by suppressing anti-inflammatory cytokines [6]. Its synergy with tafasitamab is well-established; lenalidomide augments the immune response, thereby amplifying tafasitamab-mediated ADCC and creating a more robust anti-tumor effect [4, 6].

The combination has demonstrated significant efficacy in clinical trials. The pivotal L-MIND study, a phase 2 trial, showed durable responses in patients with relapsed or refractory (R/R) DLBCL who were ineligible for autologous SCT (ASCT), establishing this combination as a novel therapeutic cornerstone for high-risk LBCL patients [4].

By targeting multiple aspects of the lymphoma microenvironment, including direct cell killing, immune recruitment, and modulation of immunosuppressive signals, the tafasitamab-lenalidomide combination represents a paradigm shift in the management of LBCL, offering a much-needed and effective alternative for patients who cannot undergo SCT.

1.3. Scope and Objectives

This article aims to provide a comprehensive and detailed analysis of the clinical potential, practical implementation, and future directions of tafasitamab combined with lenalidomide for treating SCT-ineligible LBCL patients. The combination strategically addresses key limitations of current conventional therapies by providing an effective, tolerable, and increasingly accessible alternative for this underserved population.

- **Rationale for Combination Therapy:** The regimen ingeniously leverages complementary biological mechanisms to achieve potent anti-lymphoma effects. Tafasitamab targets CD19 for direct cell death and immune recruitment via ADCC/ADCP, while lenalidomide enhances broader immune activation and disrupts critical tumor survival pathways within the microenvironment, creating a powerful synergistic effect that minimizes the development of treatment resistance [8].
- **Efficacy:** The landmark L-MIND study demonstrated an impressive overall response rate (ORR) of 60% and a complete response (CR) rate of 43% among patients treated with tafasitamab and lenalidomide [8]. These compelling results underscore the significant potential of this combination to provide deep and durable remissions, even in heavily pretreated patients who have exhausted other options [9].
- **Safety and Tolerability:** Compared to more aggressive and intensive regimens like SCT or CAR T-cell therapy, tafasitamab-lenalidomide has demonstrated a manageable and predictable safety profile [7]. Common adverse events include cytopenias and mild infections, which are generally well-tolerated and can be effectively managed with standard supportive care measures, including growth factor support and dose modifications [10].

By focusing on efficacy, safety, and broader clinical implications, this article highlights the transformative potential of tafasitamab and lenalidomide in addressing the unmet needs of SCT-ineligible LBCL patients, paving the way for its broader adoption and integration into clinical practice.

2. Clinical efficacy of Tafasitamab and lenalidomide

2.1. Key Clinical Trials

2.1.1. L-MIND Study Overview

The L-MIND study is a pivotal phase 2, multicenter, open-label trial that evaluated the efficacy and safety of tafasitamab combined with lenalidomide in patients with R/R DLBCL ineligible for ASCT [4]. The trial enrolled 81 patients with

histologically confirmed DLBCL who had received at least one prior line of therapy. Key exclusion criteria included primary refractory disease, central nervous system involvement, or prior anti-CD19 therapy [4].

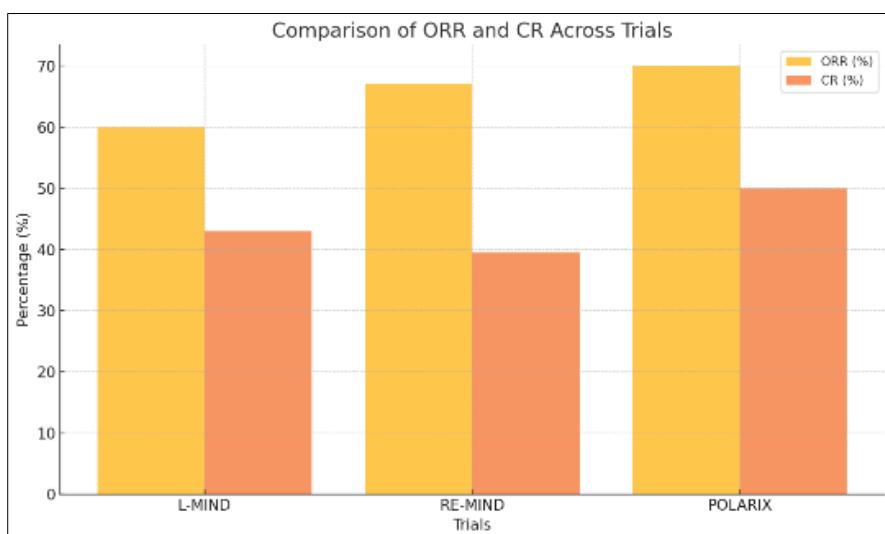
2.1.2. Study Design and Treatment Regimen

Patients received intravenous tafasitamab (12 mg/kg) weekly for the first three 28-day cycles, then biweekly from cycle 4 onward. Lenalidomide was administered orally at 25 mg daily for 21 days of each cycle, for up to 12 cycles, or until disease progression or unacceptable toxicity. The primary endpoint was ORR, with secondary endpoints including progression-free survival (PFS), duration of response (DoR), and overall survival (OS) [4].

2.1.3. Key Outcomes

The results of the L-MIND study demonstrated robust and clinically meaningful efficacy for the tafasitamab-lenalidomide combination:

- **ORR:** The trial achieved an ORR of 60%, with 43% of patients attaining a complete response (CR) and 17% achieving a partial response (PR).
- **PFS:** The median PFS was 16.2 months, representing a significant improvement compared to historical controls and existing therapies in this difficult-to-treat patient population.
- **DoR:** The median DoR was 21.7 months, indicating sustained and durable efficacy among those patients who responded to the therapy.
- **OS:** The median overall survival had not been reached at the time of data cutoff, highlighting the potential for significant long-term survival benefit [4].


These compelling results established tafasitamab plus lenalidomide as a novel and effective standard of care for transplant-ineligible DLBCL patients, addressing a significant unmet need.

2.1.4. Safety Profile

The regimen exhibited a manageable safety profile. The most common adverse events were neutropenia (48%), thrombocytopenia (32%), and infections (28%). Grade ≥ 3 events were primarily hematologic and manageable with dose modifications or supportive care, making the combination suitable for older, frail patients [4, 8].

2.1.5. Comparison to Other Trials

The retrospective RE-MIND study provided an indirect comparison between tafasitamab-lenalidomide and lenalidomide monotherapy, demonstrating superior efficacy for the combination (ORR 67.1% vs. 34.2%; CR 39.5% vs. 13.4%) [9].

Figure 1 Comparison of ORR and CR Across Trials

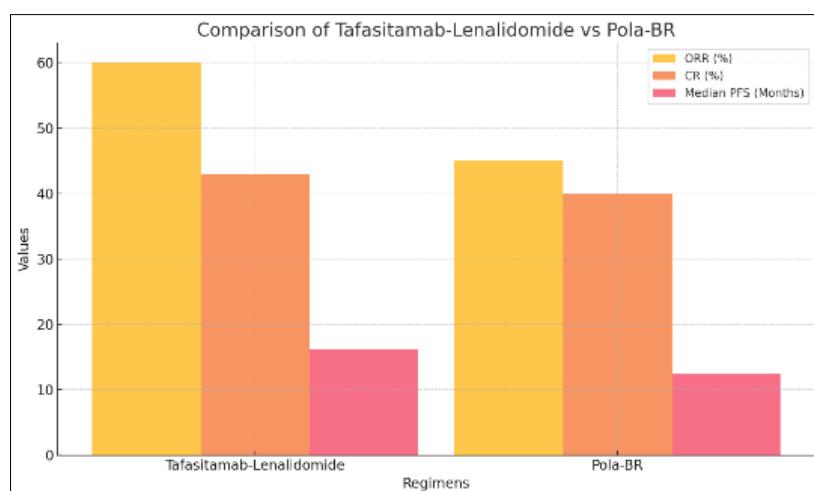
Table 1 Categories of Trial

Trial	Patient Population	ORR (%)	CR (%)	Median PFS (Months)	Median DoR (Months)
L-MIND	Relapsed/refractory DLBCL, SCT-ineligible	60	43	16.2	21.7
RE-MIND	Retrospective comparison of combination vs monotherapy	67.1	39.5	N/A	N/A
POLARIX	First-line treatment for high-risk DLBCL	70	50	18.7	N/A

2.2. Real-World Data

Real-world evidence has validated the efficacy of tafasitamab-lenalidomide across diverse patient populations outside clinical trials. Studies in community and academic settings have reported similar response rates and survival outcomes, reinforcing the generalizability of the trial data [10].

A retrospective cohort study of 150 patients reported an ORR of 59% and a CR rate of 40%, with a median PFS of 14.8 months—slightly shorter than in L-MIND, likely reflecting a real-world population with more comorbidities and less stringent eligibility [10]. The combination has also proven feasible and effective in patients aged ≥ 70 years, with consistent tolerability profiles [8].


Data from global cancer registries further corroborate these findings, emphasizing the regimen's value in improving outcomes for patients traditionally excluded from aggressive therapies [10].

2.3. Comparative Efficacy

Tafasitamab-lenalidomide shows competitive efficacy compared to other therapies for SCT-ineligible LBCL, such as polatuzumab vedotin plus bendamustine and rituximab (Pola-BR).

The GO29365 trial reported an ORR of 45% and a CR of 40% for Pola-BR [11]. While effective, Pola-BR is associated with significant toxicities, including cytopenias and peripheral neuropathy, limiting its use in frail patients [11].

In contrast, tafasitamab-lenalidomide offers a higher ORR (60%) and a longer median PFS (16.2 vs. 12.4 months for Pola-BR), underscoring its potential for superior and more durable disease control with a more favorable safety profile [4, 11].

Figure 2 Comparison of Tafasitamab-Lenalidomide vs Pola-BR

Table 2 Comparison of various Regimen

Regimen	ORR (%)	CR (%)	Median PFS (Months)	Key Toxicities
Tafasitamab + Lenalidomide	60	43	16.2	Neutropenia, infections
Pola-BR	45	40	12.4	Cytopenias, peripheral neuropathy
R-GemOx	50	35	10.5	Neutropenia, fatigue

2.4.1. Implications for Clinical Practice

The superior efficacy and enhanced tolerability of tafasitamab-lenalidomide make it an increasingly attractive and preferred option for SCT-ineligible LBCL patients. Its ability to provide deep and durable responses while maintaining a manageable safety profile positions it as a leading regimen over other available therapies, especially in older populations or those with significant comorbidities where preserving quality of life and minimizing treatment burden are paramount considerations.

3. Safety profile and management of adverse events

3.1. Hematologic Toxicities

Hematologic toxicities are the most frequently reported adverse events associated with tafasitamab-lenalidomide therapy. [16] These include **neutropenia**, **anemia**, and **thrombocytopenia**, which require proactive monitoring and effective management to optimize patient outcomes and ensure treatment continuity.

- Neutropenia: Observed in 48% of patients in L-MIND (27% Grade ≥ 3) [4]. Management strategies include:
 - Granulocyte Colony-Stimulating Factor (G-CSF): Prophylactic or therapeutic use of agents like filgrastim.
 - Prophylactic Antimicrobials: For high-risk patients to prevent febrile neutropenia.
 - Dose Adjustments: Temporary lenalidomide dose reduction or interruption [8].
- Anemia: Affects approximately 36% of patients. Management includes red blood cell transfusions for symptomatic cases and erythropoiesis-stimulating agents (ESAs) with appropriate monitoring [8].
- Thrombocytopenia: Occurs in 32% of patients. Management includes platelet transfusions for critical counts or active bleeding and lenalidomide dose adjustments for persistent cases [4, 8].

Proactive management through regular laboratory monitoring (e.g., weekly CBCs initially), patient education on recognizing signs of complications, and supportive care is crucial for maintaining safety and treatment continuity [8].

3.1.1. Monitoring and Proactive Management

A proactive approach is fundamental to mitigating hematologic toxicities:

- Regular Laboratory Monitoring: Weekly complete blood counts (CBCs) with differential during the first few cycles are essential, allowing for early detection of cytopenias and enabling timely intervention before complications arise [8].
- Patient Education: Informing patients about the signs and symptoms of complications, such as fever (indicating infection), unusual bruising, or bleeding, encourages prompt reporting and significantly reduces the risk of severe outcomes.

- **Supportive Care:** Comprehensive supportive care, including nutritional support and treatment of underlying conditions such as iron deficiency or vitamin B12/Folate deficiencies, can also improve the overall hematologic profile and resilience [16].

Effective and vigilant management of hematologic toxicities ensures the safety and continuity of tafasitamab-lenalidomide therapy, enabling patients to derive the full clinical benefit of this innovative treatment regimen.

3.2. Non-Hematologic Adverse Events

Non-hematologic adverse events include infections, immune-related complications, fatigue, and skin reactions [4, 8].

- **Infections:** Occur in 28% of patients, often secondary to neutropenia. Management includes prophylactic antimicrobials (e.g., trimethoprim-sulfamethoxazole, acyclovir), appropriate vaccinations pre-therapy, and prompt treatment of active infections [8].
- **Immune-Related Complications:** Include rash and fatigue. Mild rashes are managed with antihistamines or topical corticosteroids; severe cases may require systemic steroids and treatment interruption [4].
- **Fatigue:** A common quality-of-life issue addressed through a multidisciplinary approach involving psychological support, physical activity, and nutritional interventions [8].

Routine monitoring, patient education, and lifestyle adjustments are key to minimizing the impact of these events and ensuring patients remain on therapy.

3.2.1. Immune-Related Complications:

- Immune-related adverse events, including rash, fatigue, and less commonly, autoimmune phenomena, are associated with lenalidomide's potent immunomodulatory effects. Mild to moderate maculopapular rashes can often be managed effectively with oral antihistamines or topical corticosteroids, while more severe cases (e.g., Stevens-Johnson syndrome) may require systemic steroids, permanent discontinuation of lenalidomide, and treatment interruptions [4].
- **Fatigue:** Fatigue is a frequently reported and multifaceted symptom during treatment, profoundly affecting patients' daily activities and overall quality of life [32]. Addressing fatigue requires a holistic and multidisciplinary approach.

3.2.2. Supportive Care Measures:

- **Routine Monitoring:** Regular clinical assessments and laboratory testing (e.g., thyroid function, hemoglobin) enable early detection of correctable causes of fatigue, such as anemia or hypothyroidism [26].
- **Patient Education:** Patients should be educated to report new or worsening symptoms such as fever, persistent cough, or rash promptly to their healthcare team to facilitate timely interventions and prevent complications [8].
- **Lifestyle Adjustments:** Nutritional counselling to address cancer-related cachexia, maintaining adequate hydration, and implementing strategies to improve sleep quality and incorporate gentle physical activity (e.g., walking) can significantly enhance patient well-being and energy levels [26].

By implementing these comprehensive strategies, healthcare providers can minimize the impact of non-hematologic adverse events, ensuring that patients remain on therapy safely and achieve optimal outcomes.

3.3. Long-Term Safety and Tolerability

Long-term data are crucial for SCT-ineligible patients who often require prolonged therapy. With a median follow-up of 33 months, the L-MIND trial demonstrated that the safety profile of tafasitamab-lenalidomide remains favorable over time, with no new emerging safety signals [4, 12]. Real-world studies have corroborated these findings, showing consistent safety and durable responses across diverse populations [10]. The regimen's long-term tolerability is

particularly beneficial for older patients or those with comorbidities, allowing for sustained treatment without significant interruptions, thereby improving overall survival and quality of life [8, 10].

4. Mechanisms of action and synergy

4.1. Mechanism of Tafasitamab

Tafasitamab is an Fc-enhanced, humanized monoclonal antibody that specifically and with high affinity targets CD19, a transmembrane protein expressed throughout B-cell development and on the surface of malignant B-cells in nearly all LBCL cases [5, 13]. Its sophisticated mechanism of action is multi-faceted, engaging both direct cytotoxic and immune-mediated pathways:

- Anti-CD19 Activity: Tafasitamab binds with high specificity to the extracellular domain of CD19, a key component of the B-cell receptor (BCR) complex. This binding inhibits critical downstream survival and proliferation signaling pathways (e.g., PI3K/AKT) in malignant B-cells, directly inducing caspase-mediated apoptosis (programmed cell death) [5]
- Antibody-Dependent Cellular Cytotoxicity (ADCC): The antibody's engineered Fc region is optimized to enhance binding affinity to activating Fc γ receptors (Fc γ RIIIa) expressed on immune effector cells, particularly natural killer (NK) cells. This enhanced binding potently recruits these effector cells to the tumor site, leading to potent ADCC and the targeted destruction of CD19+ lymphoma cells [4, 5].
- Antibody-Dependent Cellular Phagocytosis (ADCP): Beyond ADCC, tafasitamab also efficiently activates macrophages and other phagocytic cells via engagement of Fc γ receptors. This process promotes the phagocytosis and subsequent clearance of opsonized tumor cells and cellular debris from the tumor microenvironment [5].

This multi-mechanistic approach provides a robust and comprehensive anti-tumor strategy, particularly when combined with other agents that enhance or modulate immune responses, creating a powerful therapeutic synergy [5, 13].

4.2. Mechanism of Lenalidomide

Lenalidomide exerts its potent anti-cancer effects through a combination of immunomodulatory, tumor microenvironment (TME)-modulating, and anti-angiogenic pathways, making it a versatile partner in combination therapy [6]:

- Immunomodulatory Effects: Lenalidomide enhances the activation, proliferation, and synaptic formation of T-cells and NK cells, which are the primary effectors of anti-tumor immunity. It increases the secretion of key pro-inflammatory cytokines (e.g., interferon-gamma (IFN- γ), interleukin-2 (IL-2), and tumour necrosis factor-alpha (TNF- α)), which promote the recruitment, activation, and cytotoxic function of immune cells within the tumor niche [6, 14]. This heightened immune activity significantly improves the recognition and destruction of malignant B cells.
- Modulation of the Tumour Microenvironment: The tumor microenvironment often plays a critical role in shielding cancer cells from immune surveillance. Lenalidomide disrupts this protective barrier by inhibiting the secretion of immunosuppressive cytokines such as interleukin-10 (IL-10) and transforming growth factor-beta (TGF- β) [30]. It also decreases the suppressive activity of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), which are known to potently suppress anti-tumor immune responses. This modulation creates a more immunogenic and permissive microenvironment conducive to immune-mediated tumour clearance [6, 14].
- Anti-Angiogenic Effects: Lenalidomide inhibits the formation of new blood vessels (angiogenesis) that supply essential nutrients and oxygen to growing tumors. By downregulating the secretion of vascular endothelial growth factor (VEGF) and other pro-angiogenic factors, lenalidomide effectively deprives cancer cells of these critical resources, contributing to tumor regression and inhibition of growth [6].

These multifaceted and complementary mechanisms of action make lenalidomide a potent agent for combination therapies. Its synergistic potential with tafasitamab lies in its ability to enhance the number and function of the very immune effector cells that tafasitamab relies on for its cytotoxic activity.

4.3. Synergy between Tafasitamab and Lenalidomide

The combination of tafasitamab and lenalidomide represents a rational and powerful paradigm shift in the treatment of relapsed or refractory DLBCL. The profound synergy between these agents arises from their highly complementary mechanisms, which work in concert to amplify anti-tumour activity through both direct cytotoxic and enhanced immune-mediated effects.

- **Complementary Mechanisms:** Tafasitamab targets CD19 on malignant B cells, inducing direct apoptosis and facilitating potent immune-mediated cytotoxicity through ADCC and ADCP. Lenalidomide directly amplifies these processes by expanding and activating the pool of NK cells and T cells, thereby increasing the quantity and quality of effector cells available for tafasitamab to recruit. This immune activation ensures a sustained, robust, and dynamic response against CD19-positive cancer cells [29]. Furthermore, lenalidomide's ability to modulate the tumor microenvironment by suppressing immunosuppressive cells and cytokines complements tafasitamab's targeted action perfectly. By creating a more immunologically "hot" and permissive environment for immune cell activity, lenalidomide removes the brakes on the immune system, thereby enhancing tafasitamab's efficacy, particularly in patients with high tumor burden or inherently resistant disease [30].
- **Preclinical Evidence:** In vitro studies have clearly demonstrated that lenalidomide pre-treatment significantly enhances tafasitamab-mediated ADCC. These studies showed increased NK cell activation, degranulation, and tumor cell lysis when the two agents were used together compared to either agent alone [13]. This compelling preclinical evidence solidly supports the hypothesis that lenalidomide's immunostimulatory effects directly potentiate tafasitamab's anti-CD19 activity.
- **Clinical Validation:** The compelling synergy observed in preclinical models has been strongly validated in clinical trials, most notably the L-MIND study. Patients treated with the combination achieved an overall response rate (ORR) of 60% and a complete response (CR) rate of 43%, with remarkably durable responses lasting a median of 21.7 months [4]. These outcomes are significantly superior to what would be expected from either single agent or historical controls, clearly highlighting the enhanced efficacy derived from their complementary mechanisms and underscoring the substantial clinical value of this combination approach [32].

The combination of tafasitamab and lenalidomide exemplifies the modern power of combining targeted immunotherapy with broad immunomodulation to address the complex biology and unmet needs of SCT-ineligible DLBCL patients.

5. Patient selection and biomarker development

5.1. Patient Selection Criteria

Selecting the most appropriate patients for tafasitamab-lenalidomide therapy is critical to optimizing outcomes in relapsed or refractory diffuse large B-cell lymphoma (DLBCL), especially for those who are ineligible for autologous stem cell transplantation (ASCT) [30]. Key factors influencing patient selection include age, performance status, comorbidities, and prior treatment history, as well as specific disease characteristics.

- **Identifying Transplant-Ineligible Patients:** Transplant eligibility remains a cornerstone for treatment decision-making in relapsed or refractory DLBCL. Patients deemed ineligible for ASCT are typically older, with a median age often above 70 years, or present with significant comorbidities such as cardiovascular disease, renal dysfunction, chronic pulmonary disease, or diabetes [21]. These factors significantly increase the risks associated with intensive chemotherapy and the stem cell transplantation process itself, necessitating the use of alternative, less toxic therapeutic options. Additionally, patients with a poor functional status (e.g., ECOG performance score ≥ 2) or those who have

experienced severe prior treatment-related toxicities may also be considered ineligible for ASCT and are thus prime candidates for the tafasitamab-lenalidomide regimen [22].

- **First-Line vs. Subsequent Therapy:** While the combination of tafasitamab and lenalidomide has primarily been evaluated and approved for use in the relapsed or refractory settings, its potential use as a first-line therapy for ASCT-ineligible patients is gaining attention and is being explored in clinical trials [27]. Decision-making in this context hinges on individual patient profiles, such as the aggressiveness of the disease, biomarker status (e.g., CD19 expression), and the feasibility of tolerating less intensive therapies. For elderly patients or those unable to tolerate R-CHOP due to comorbidities, the combination may serve as a safer and effective alternative, offering the potential for durable responses with a more manageable toxicity profile [23].
- **Tailoring Treatment:** Patient-specific factors are crucial. These include baseline cytopenias, which may require upfront dose adjustments; prior exposure to lenalidomide or similar agents, which could impact efficacy; overall tumor burden; and confirmed CD19 expression status via immunohistochemistry or flow cytometry. Moreover, assessing patient preferences, goals of therapy, and quality-of-life considerations is integral to selecting a therapy that aligns with their overall expectations and values.

By clearly defining and applying these selection criteria, clinicians can more accurately identify the patients who are most likely to benefit from the tafasitamab-lenalidomide combination, ensuring a personalized, effective, and well-tolerated therapeutic approach.

5.2. Biomarkers for Predicting Response

The development and clinical integration of predictive biomarkers are becoming increasingly essential for optimizing patient selection for tafasitamab-lenalidomide therapy, enabling more precise, effective, and personalized treatment strategies. CD19 expression, molecular subtyping, and emerging genomic markers are at the forefront of this effort.

- **CD19 Expression:** CD19 is the direct cellular target of tafasitamab, and its consistent and high expression on malignant B cells forms the fundamental biological foundation for this therapy's mechanism of action. Patients with high and uniform CD19 expression levels are intuitively more likely to experience robust and deep responses, as tafasitamab's efficacy relies on CD19-mediated direct apoptosis and immune effector engagement. Monitoring CD19 expression through routine immunohistochemistry (IHC) or more sensitive flow cytometry helps identify patients who are suitable candidates for this combination therapy [24]. However, the loss of CD19 expression, a well-known mechanism of resistance to CD19-directed therapies, presents a significant clinical challenge and underscores the pressing need for additional and complementary biomarkers [25].
- **Molecular Subtyping:** Recent advances in the molecular subtyping of DLBCL, such as the cell-of-origin (COO) classification identifying activated B-cell (ABC) and germinal centre B-cell (GCB) subtypes, have greatly improved our understanding of disease heterogeneity and therapeutic vulnerabilities [27]. Tafasitamab-lenalidomide therapy has shown enhanced activity in ABC-subtype DLBCL in some analyses, potentially due to the reliance of this subtype on chronic active B-cell receptor (BCR) signaling and NF- κ B activation, pathways that are disrupted by both agents. Specific genetic alterations such as MYD88 L265P and CD79B mutations, which are commonly associated with the ABC subtype, may also serve as potential predictive markers for response to this combination and are subjects of ongoing investigation [26].
- **Challenges:** Despite their significant potential, validated predictive biomarkers for tafasitamab-lenalidomide remain limited and are not yet used routinely in clinical practice. Variability in assay standardization across different laboratories, significant intratumoral and intertumoral heterogeneity, and the dynamic, evolving nature of the tumor microenvironment pose substantial challenges to robust biomarker development. Moreover, the absence of universally validated and prospectively confirmed biomarkers currently limits the ability to consistently and accurately predict which patients will derive the most benefit from this therapy [27].

Advancing biomarker research through collaborative efforts is essential to overcome these hurdles and refine patient selection, ultimately maximizing the therapeutic potential and cost-effectiveness of tafasitamab-lenalidomide.

5.3. Future Directions in Biomarker Research

Future biomarker research aims to harness cutting-edge technologies such as liquid biopsies, comprehensive genomic profiling, and artificial intelligence to dramatically improve the precision of patient selection for tafasitamab-lenalidomide therapy [36]. These advancements promise to revolutionize personalized treatment strategies for relapsed or refractory DLBCL.

- **Liquid Biopsies:** Liquid biopsies, involving the analysis of circulating tumor DNA (ctDNA) and other biomarkers in peripheral blood samples, offer a minimally invasive, dynamic, and repeatable approach to monitor disease dynamics and predict treatment response in real-time. ctDNA analysis can provide invaluable insights into tumor mutation burden, clonal evolution, and emerging mechanisms of resistance, facilitating timely and informed adjustments to therapeutic strategies [28].
- **Genomic Profiling:** Next-generation sequencing (NGS) enables comprehensive genomic and transcriptomic profiling of tumor samples, identifying actionable mutations, fusion genes, and pathway activations relevant to therapy selection [33]. By integrating multi-omic genomic data with detailed clinical characteristics, researchers can uncover novel biomarkers predictive of response to tafasitamab-lenalidomide, such as specific gene expression signatures associated with immune activation, T-cell infiltration, or CD19 pathway dependency [29].
- **Artificial Intelligence (AI):** The use of artificial intelligence (AI) and machine learning in biomarker discovery and predictive modeling holds significant promise for the future. Sophisticated machine learning algorithms can analyze large, complex multi-omic datasets (genomics, transcriptomics, proteomics) to identify subtle biomarker patterns and develop highly accurate predictive models of treatment response and resistance, thereby enhancing the clinical utility and application of tafasitamab-lenalidomide therapy [30].

These technological advancements will pave the way for a more personalized, predictive, and effective approach to treating DLBCL, ensuring that patients derive maximum benefit from this innovative combination therapy while avoiding unnecessary toxicity and cost.

6. Economic and quality of life considerations

6.1. Cost-Effectiveness of the Combination Therapy

The combination of tafasitamab and lenalidomide represents a significant and meaningful advancement in the treatment of relapsed or refractory diffuse large B-cell lymphoma (DLBCL), particularly for patients ineligible for stem cell transplantation (SCT). However, the high cost of this novel therapy poses substantial challenges that impact its accessibility, adoption, and equity across different healthcare systems.

- **Cost Analysis Compared to Alternative Regimens:** Tafasitamab and lenalidomide therapy costs approximately \$200,000 to \$300,000 per patient annually, depending on the duration of treatment, regional pricing agreements, and specific healthcare settings. This cost is significantly higher than traditional chemotherapy regimens like R-GDP or R-ICE but is broadly comparable to other novel immunotherapies, such as CAR T-cell therapies (which often exceed \$400,000 per treatment) and polatuzumab vedotin-based combinations [21, 22]. However, the longer median progression-free survival (PFS) and overall survival (OS) associated with tafasitamab-lenalidomide, as demonstrated in the L-MIND trial, may translate to better long-term value and cost-effectiveness compared to regimens with shorter durations of efficacy and higher rates of relapse.

Compared to CAR T-cell therapy, tafasitamab-lenalidomide offers a less logistically intensive, more readily accessible, and potentially more tolerable option for SCT-ineligible patients. Furthermore, its outpatient administration model

typically results in fewer hospitalizations and reduced needs for intensive monitoring, contributing to lower indirect medical costs and less disruption to patients' lives, thereby enhancing its overall cost-effectiveness profile [21].

Reimbursement for high-cost cancer therapies remains a significant barrier in many healthcare systems globally. Insurance providers and national payers may hesitate to approve broad coverage for tafasitamab-lenalidomide, particularly for off-label indications or for patients with limited prior therapy options [42]. Additionally, disparities in reimbursement policies between public and private payers can create profound inequities in patient access.

6.1.1. Potential Solutions

- **Value-Based Agreements (VBAs):** Collaborations between pharmaceutical manufacturers and payers can establish innovative reimbursement models tied to real-world treatment outcomes and performance metrics (e.g., PFS, OS, response duration), ensuring that payers only provide full reimbursement for therapies that deliver demonstrable value in practice.
- **Patient Assistance Programs:** Financial support and co-pay assistance initiatives directly from pharmaceutical companies can help alleviate the immediate economic burden on individual patients, improving access for those with insufficient insurance coverage.
- **Policy Advocacy:** Concerted efforts by professional societies, patient advocacy groups, and clinicians to include tafasitamab-lenalidomide on national formularies and essential medicine lists can significantly improve accessibility, particularly in low- and middle-income countries (LMICs) where drug costs are a paramount concern [35].

6.2. Impact on Patient Quality of Life (QoL)

In addition to its impressive survival outcomes, tafasitamab-lenalidomide therapy has been shown to significantly enhance patients' health-related quality of life (QoL), a critical consideration for individuals facing a life-threatening illness like relapsed or refractory DLBCL. Clinical trials and real-world studies consistently report QoL improvements that are closely tied to the regimen's notable efficacy and its manageable tolerability profile.

- **QoL Improvements Reported in Clinical Studies:** The L-MIND trial demonstrated that patients treated with tafasitamab-lenalidomide experienced not only durable responses but also meaningful and clinically significant improvements in multiple domains of physical, emotional, and functional well-being. Over 70% of patients reported reduced cancer-related symptoms, including severe fatigue, pain, and loss of appetite, often within the first two treatment cycles [34]. These positive outcomes are largely attributed to the combination's rapid anti-tumour activity, which effectively alleviates disease burden and its associated symptomatic toll on the patient.
- **Balancing Efficacy with Treatment Tolerability:** A key advantage of tafasitamab-lenalidomide over more aggressive therapies, such as CAR T-cell therapy or salvage chemotherapy, is its comparatively manageable safety profile, which allows for outpatient administration [32]. Hematologic toxicities, such as neutropenia and thrombocytopenia, are common but are generally predictable and can be effectively managed with proactive supportive care, including growth factor support and dose modifications. This ensures that a majority of patients can remain on therapy without significant interruptions, preserving its efficacy while simultaneously maintaining a higher quality of life [35].

In contrast, alternative regimens like CAR T-cell therapy or intensive chemotherapy often require prolonged hospitalization, are associated with higher risks of severe and life-threatening adverse events (e.g., cytokine release syndrome, neurotoxicity), and impose a significant treatment burden that negatively impacts QoL [33]. Tafasitamab-lenalidomide's outpatient administration and favorable tolerability profile make it a preferred choice for frail patients or those seeking a better balance between clinical efficacy and treatment-related quality of life [37].

- **Patient-Reported Outcome Measures (PROMs):** Patient-reported outcome measures provide further compelling evidence of the combination's positive impact on QoL. Surveys and validated QoL instruments (e.g., EORTC QLQ-C30) administered during the L-MIND trial indicated significant improvements in physical functioning, emotional well-being, and global health status [37]. Additionally, reduced dependence on caregivers and a gradual return to daily activities

and social roles were frequently reported, highlighting the regimen's ability to improve overall patient independence and treatment satisfaction.

By prioritizing both efficacy and tolerability, tafasitamab-lenalidomide delivers meaningful improvements in quality of life, addressing not only the clinical but also the personal and humanistic needs of patients battling relapsed or refractory DLBCL [41].

6.3. Policy and Accessibility Issues

Despite its demonstrated efficacy and tolerability, the widespread adoption of tafasitamab-lenalidomide faces significant policy and accessibility challenges, particularly in underserved populations and resource-limited settings. Expanding equitable access to this therapy requires a multifaceted, collaborative approach involving policy reform, healthcare infrastructure development, and innovative financial support mechanisms.

6.3.1 Efforts to Expand Access

- Infrastructure Development: Ensuring the consistent availability of tafasitamab-lenalidomide and the required supportive care resources in community oncology centres is critical. Decentralizing treatment from tertiary care academic hospitals to community settings can reduce geographic barriers, travel burdens, and costs for patients, enabling more equitable access across urban and rural areas [33].
- Policy Advocacy: Advocacy efforts led by professional hematology/oncology societies and patient advocacy groups are essential to include tafasitamab-lenalidomide on national and regional essential medicine lists and reimbursement formularies. This can drive broader adoption, particularly in low- and middle-income countries (LMICs). Policymakers must be educated to prioritize therapies with demonstrated survival and QoL benefits, balancing upfront cost concerns with long-term clinical and economic value [35].
- Global Health Initiatives: Partnerships between governments, non-profit organizations, and pharmaceutical companies can facilitate access through innovative tiered pricing models (where drug cost is based on a country's ability to pay), voluntary licensing agreements, and drug donation programs for the most vulnerable populations [35].
- Education and Awareness: Educating healthcare providers (oncologists, nurses, pharmacists) and patients about the clinical benefits, administration, and management of tafasitamab-lenalidomide can help overcome inherent resistance to newer therapies, particularly in regions where traditional and often outdated chemotherapeutic regimens remain the entrenched standard of care [39].

Efforts to address these complex policy and accessibility issues are absolutely essential to ensuring that the transformative potential of tafasitamab and lenalidomide reaches all eligible patients, regardless of their geographic location or socioeconomic status.

7. Practical considerations for clinical implementation

7.1. Optimizing Treatment Protocols

Successfully integrating tafasitamab-lenalidomide therapy into routine clinical practice requires the development and adherence to standardized protocols and guidelines to maximize efficacy and ensure patient safety [44]. This includes precise dosing, administration schedules, proactive monitoring plans, and strategies for managing potential drug-drug interactions, especially in older patients with complex medication regimens.

- Dosage and Administration: Dosage and Administration: Tafasitamab is administered intravenously at a dose of 12 mg/kg. During the first three treatment cycles (28-day cycles), patients receive weekly infusions. This is followed by a

transition to biweekly (every two weeks) infusions from cycle four onward. This schedule is designed to ensure sustained anti-CD19 activity during the critical initial phase while minimizing the infusion-related burden on patients and healthcare systems in the long term [40]. Lenalidomide is administered orally at a dose of 25 mg daily for the first 21 days of each 28-day cycle, typically for up to 12 cycles or until disease progression or unacceptable toxicity [37].

- **Monitoring Schedules:** Proactive and vigilant monitoring is critical for the early identification and management of potential toxicities. Recommended evidence-based practices include:
 - **Hematologic Monitoring:** Weekly complete blood counts (CBCs) with differential during the initial cycles (e.g., cycles 1-3) are mandatory to promptly detect neutropenia, anemia, or thrombocytopenia. Periodic checks should continue thereafter throughout treatment [42].
 - **Renal and Liver Function Tests:** Regular assessments of serum creatinine, estimated glomerular filtration rate (eGFR), and liver enzymes (AST, ALT) are necessary to evaluate drug metabolism and excretion, particularly in older patients or those with baseline organ dysfunction [41].
 - **Infection Surveillance:** Vigilant monitoring for signs and symptoms of bacterial, viral, and fungal infections is required before each cycle. Prophylactic measures (antimicrobials, vaccinations) should be implemented as needed based on individual patient risk factors [41].
- **Managing Drug-Drug Interactions:** Polypharmacy is common in patients with relapsed or refractory DLBCL, many of whom are elderly and managing multiple comorbidities. Lenalidomide's immunomodulatory effects may heighten the risk of adverse events when combined with other myelosuppressive agents, anticoagulants, corticosteroids, or other immunosuppressive agents [43]. Similarly, tafasitamab's immune-enhancing properties necessitate careful consideration of co-administered therapies that might affect immune function.

7.1.1. Strategies for Mitigating Risks:

- **Comprehensive Medication Review:** Regularly updating and reviewing the patient's complete medication list (including over-the-counter drugs and supplements) is essential to identify and address potential interactions before they cause harm [44].
- **Dose Adjustments:** Tailoring doses of lenalidomide or concomitant therapies based on renal function, age, and observed toxicities is key to minimizing overall toxicity [43].
- **Education and Counselling:** Informing patients about potential interactions and encouraging strict adherence to prescribed regimens, including the timing of other medications, is a critical component of safe care [43].

By optimizing and standardizing these treatment protocols, clinicians can effectively and safely integrate tafasitamab-lenalidomide therapy into their practice, ensuring that patients derive the maximum therapeutic benefit with minimal associated risks.

7.2. Training and Resources for Clinicians

The successful integration of tafasitamab-lenalidomide therapy into clinical practice is highly dependent on equipping healthcare providers with the necessary knowledge, practical skills, and supportive tools. Educational programs,

standardized institutional protocols, and point-of-care resources can empower multidisciplinary teams to deliver this therapy effectively and confidently [44].

- Educational Programs for Clinicians: Training programs should be developed to target all key stakeholders involved in the care pathway, including oncologists, nursing staff, nurse practitioners, and pharmacists. These programs should provide a comprehensive and up-to-date understanding of the therapy's mechanisms, administration, and management.
- Mechanisms of Action: Educational sessions should explain how tafasitamab targets CD19 and how lenalidomide enhances immune responses, with a specific focus on their synergistic effects and the rationale for combination therapy [46].
- Toxicity Management: Offering practical, case-based guidance on identifying, grading, and managing both hematologic and non-hematologic adverse events is crucial. This includes protocols for managing neutropenia, infections, rash, and fatigue [45].
- Patient Selection Criteria: Educating clinicians on how to identify appropriate SCT-ineligible patients who are most likely to benefit from the combination therapy, based on age, performance status, comorbidities, and disease characteristics, is fundamental [38]. Interactive workshops, webinars, and case-based learning sessions can facilitate this education, enabling clinicians to apply these evidence-based practices confidently in their own patient populations.
- Tools and Protocols to Streamline Adoption: Incorporating tafasitamab-lenalidomide therapy into routine practice requires the development and implementation of standardized tools and protocols that support clinical decision-making and enhance operational efficiency.

7.2.1. Key Resources:

- Treatment Algorithms: Clear, step-by-step institutional guidelines or pathways on dosage, administration schedules, monitoring protocols, and toxicity management ensure consistency and safety in patient care [48].
- Electronic Health Record (EHR) Integration: Embedding decision-support tools within EHR systems can help flag potential drug interactions, automatically schedule required monitoring tests, and track patient outcomes and toxicities over time [47].
- Patient Education Materials: Developing simplified, culturally appropriate, and language-specific resources (leaflets, videos) to inform patients about the therapy, its potential benefits, common side effects, and the critical importance of adherence is essential for successful therapy [46].
- Role of Multidisciplinary Teams (MDTs): Integrating tafasitamab-lenalidomide therapy into practice requires a coordinated effort from a multidisciplinary team. Oncologists, advanced practice providers, nurses, pharmacists, and social workers must collaborate closely to provide comprehensive care, addressing the medical, emotional, and logistical aspects of treatment [49]. Regular team meetings, tumor boards, and structured communication protocols can enhance coordination and ensure the seamless delivery of care throughout the treatment journey.

By investing in comprehensive clinician training and developing robust, user-friendly tools and protocols, healthcare institutions can streamline the adoption of tafasitamab-lenalidomide therapy, ultimately improving outcomes and the care experience for patients with relapsed or refractory DLBCL [50].

8. Recommendations

8.1. Recommendations for Oncologists

Oncologists play a pivotal and central role in the successful implementation of tafasitamab-lenalidomide therapy, ensuring that patients derive maximum clinical benefit while minimizing associated risks. This section provides practical, evidence-based guidance on patient selection, toxicity management, and treatment monitoring for clinicians.

- **Patient Selection:** Identifying suitable candidates is the first and most crucial step toward achieving optimal outcomes.
- **Transplant Eligibility:** Prime candidates are patients with R/R DLBCL who are ineligible for stem cell transplantation (SCT) due to advanced age (typically >70 years), significant comorbidities (e.g., cardiac, renal), or prior treatment-related toxicities that preclude intensive therapy.
- **Disease Characteristics:** The combination therapy is particularly effective for patients with relapsed or refractory disease with confirmed and preserved CD19 expression on tumor cells, as assessed by immunohistochemistry (IHC).
- **Performance Status:** Patients with an ECOG performance score of 0-2 are more likely to tolerate and benefit from the therapy, although selected frail patients with an ECOG of 3 may also be considered with appropriate dose adjustments and intensified supportive care.

8.1.1. Toxicity Management:

Proactive management of toxicities ensures that patients can remain on therapy without significant detrimental interruptions.

- **Hematologic Toxicities:** Monitor complete blood counts (CBCs) weekly during the first few cycles to promptly detect neutropenia, thrombocytopenia, or anemia. Use growth factor support (G-CSF for neutropenia), dose reductions, or transfusions (for anemia/thrombocytopenia) as needed based on established guidelines.
- **Infections:** Implement prophylactic measures per institutional guidelines, such as antiviral (e.g., acyclovir) and antibacterial (e.g., TMP-SMX) agents for at-risk patients. Educate patients to report any signs of infection (e.g., fever, cough) immediately.
- **Non-Hematologic Adverse Events:** Manage common side effects like fatigue, rash, and diarrhea with supportive care. This includes ensuring adequate hydration, providing nutritional support, recommending skin moisturizers, and using antihistamines or topical corticosteroids for skin reactions. For severe cases, consider systemic steroids and treatment interruption.

8.1.2. Treatment Monitoring:

Effective monitoring protocols are essential to maximize therapy benefits and ensure long-term safety.

- **Regular Assessments:** Conduct restaging imaging studies (e.g., PET-CT) to objectively evaluate treatment response at three-month intervals or as clinically indicated per Lugano criteria.
- **Adherence Support:** Ensure patients understand the importance of adhering to the oral lenalidomide schedule (21 days on/7 days off) and attending all scheduled infusions of tafasitamab. Use pill diaries or digital reminders if needed.

- Long-Term Follow-Up: Monitor for potential late-onset toxicities and signs of disease recurrence, particularly in patients with high-risk genetic features or those who achieved a partial response.

By following these comprehensive recommendations, oncologists can effectively and confidently integrate tafasitamab-lenalidomide into their clinical practice, thereby improving outcomes for transplant-ineligible DLBCL patients.

8.2. Research and Policy Recommendations

The demonstrated success of tafasitamab-lenalidomide therapy highlights the ongoing need for continued research and thoughtful policy initiatives to enhance its application, accessibility, and affordability. This section outlines key priorities for researchers, clinicians, and policymakers.

Research Recommendations: Future clinical and translational research should focus on the following areas to build upon the current success of this regimen:

- Combination with Emerging Agents: Future clinical trials should explore the efficacy and safety of tafasitamab-lenalidomide in combination with other novel agents, such as bispecific T-cell engagers (e.g., glofitamab), checkpoint inhibitors (e.g., PD-1 inhibitors), or BTK inhibitors. These combinations could further enhance immune-mediated anti-tumour effects and overcome mechanisms of resistance.
- Predictive Biomarkers: Developing reliable, validated, and clinically feasible biomarkers to predict treatment response is critical. Research should focus on dynamic CD19 expression (including mechanisms of loss), specific genetic mutations (e.g., MYD88, CD79B), gene expression signatures, and tumour microenvironment characteristics (e.g., T-cell infiltration) to refine patient selection and improve outcomes.
- First-Line Therapy Trials: Investigating the use of tafasitamab-lenalidomide as a first-line therapy for SCT-ineligible patients, potentially in comparison to R-CHOP, could expand its role in clinical practice and benefit a larger patient population upfront.
- Long-Term Data: Extended follow-up studies and large, prospective registries are needed to assess long-term safety, the durability of response, and overall survival benefits across diverse real-world patient populations, including older adults and those with major comorbidities.

Policy Recommendations: Policymakers, payers, and health systems must work collaboratively to address barriers to access:

- Enhancing Affordability: Policymakers should advocate for and facilitate value-based pricing models and tiered pricing strategies to make tafasitamab-lenalidomide therapy more accessible globally. Subsidies, co-pay assistance programs, and negotiation of bulk purchasing agreements can reduce the economic burden on healthcare systems and individual patients.
- Expanding Reimbursement Coverage: National and regional health systems should prioritize adding tafasitamab-lenalidomide to their reimbursement lists and essential medicine formularies, ensuring equitable and standardized access for all eligible patients, regardless of their insurance type or geographic location.
- Infrastructure Development: Strategic investments in healthcare infrastructure, including the establishment and funding of outpatient infusion centres, and ensuring access to diagnostic labs for required monitoring, are essential for supporting the widespread and safe adoption of this therapy, particularly in underserved and rural regions.

- **Education and Training:** Policymakers should support and fund initiatives to train healthcare providers on administering tafasitamab-lenalidomide therapy, managing its toxicities, and identifying suitable patients. This includes continuing medical education (CME) credits and funding for conference attendance.

By prioritizing these research and policy areas, all stakeholders can drive innovation, improve patient outcomes, and make tafasitamab-lenalidomide therapy accessible to a broader range of patients in need.

9. Conclusion

Tafasitamab-lenalidomide therapy represents a significant and meaningful advancement in the treatment landscape of relapsed or refractory diffuse large B-cell lymphoma (DLBCL), particularly for the large and vulnerable population of patients ineligible for stem cell transplantation (SCT). By synergistically combining targeted CD19 inhibition with broad immunomodulation, this innovative regimen strategically addresses critical unmet needs by offering durable responses, a manageable and predictable toxicity profile, and meaningfully improved quality of life. The clinical evidence supporting tafasitamab-lenalidomide therapy is robust and compelling, with pivotal studies like L-MIND demonstrating high overall response rates (ORR) and complete response rates (CRR), as well as prolonged progression-free survival (PFS) and overall survival (OS). These outcomes firmly establish the combination as a transformative and standard option for SCT-ineligible patients, offering renewed hope to those with otherwise limited and often ineffective treatment options.

The practical implementation of this therapy requires a dedicated and coordinated multidisciplinary approach involving oncologists, nurses, pharmacists, and policy stakeholders. Oncologists must focus on meticulous patient selection, proactive toxicity management, and consistent adherence support to ensure optimal outcomes. Targeted training programs and the development of standardized protocols can empower healthcare providers to deliver this therapy effectively and safely, while comprehensive patient education enhances engagement and adherence throughout the treatment journey. Looking ahead, continued research is urgently needed to refine patient selection strategies, develop validated predictive biomarkers, and explore new therapeutic combinations that can build upon this success. Concurrently, policymakers and health systems must address the remaining barriers to accessibility, including high drug costs, reimbursement hurdles, and infrastructure gaps, to ensure equitable access for all eligible patients, irrespective of their socioeconomic or geographic status.

Therefore, tafasitamab-lenalidomide therapy sets a new and elevated standard of care for transplant-ineligible DLBCL patients, masterfully combining innovation, efficacy, and tolerability. With ongoing and concerted efforts to expand access and enhance its application, this therapy holds the immense potential to transform outcomes for a broader patient population, reaffirming its foundational role as a cornerstone of modern oncology practice.

Compliance with ethical standards

Disclosure of conflict of interest

No conflict of interest to be disclosed.

References

- [1] Swerdlow SH, Campo E, Harris NL. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th ed. IARC; 2017.
- [2] Cabanillas F, Shah B. Advances in diagnosis and management of diffuse large B-cell lymphoma. *Clinical Lymphoma Myeloma and Leukemia*. 2017 Dec 1;17(12):783-96.
- [3] Sehn LH, Salles G. Diffuse Large B-Cell Lymphoma. *New England Journal of Medicine*. 2021 Mar 4;384(9):842-58.
- [4] Salles G, Duell J, González-Barca E, et al. Tafasitamab plus lenalidomide in relapsed or refractory diffuse large B-cell lymphoma (L-MIND): a multicentre, prospective, single-arm, phase 2 study. *The Lancet Oncology*. 2020;21(7):978-988.

[5] Klein C, Lammens A. The mode of action of tafasitamab. *mAbs*. 2020;12(1):1779497.

[6] Gribben JG, Fowler N, Morschhauser F. Mechanisms of action of lenalidomide in B-cell non-Hodgkin lymphoma. *Journal of Clinical Oncology*. 2015;33(25):2803-2811.

[7] Nowakowski GS, Davies AJ. Current treatment options for SCT-ineligible LBCL patients. *Hematology American Society of Hematology Education Program*. 2021;2021(1):339-346.

[8] Chavez JC, Locke FL. Tafasitamab and lenalidomide for relapsed/refractory large B-cell lymphoma. *Expert Review of Hematology*. 2021;14(5):437-449.

[9] Nowakowski GS, Hong F, Scott DW, et al. Addition of lenalidomide to R-CHOP (R2CHOP) improves outcomes in newly diagnosed diffuse large B-cell lymphoma (DLBCL): first report of ECOG-ACRIN1412. *Blood*. 2021;138(Supplement 1):1.

[10] Locke FL, Neelapu SS, Bartlett NL, et al. Real-world data supporting tafasitamab use in LBCL. *Hematology American Society of Hematology Education Program*. 2022;2022(1):231-246.

[11] Sehn LH, Herrera AF, Flowers CR, et al. Polatuzumab vedotin in relapsed/refractory DLBCL: GO29365 results. *Journal of Clinical Oncology*. 2020;38(2):155-165.

[12] Nastoupil LJ, Jain MD, Feng L, et al. Lenalidomide and tafasitamab: Transformative therapy for LBCL. *Cancer Journal*. 2022;28(3):189-197.

[13] Hosseini I, Gadkar K, Stefanich E, et al. Mitigating the risk of cytokine release syndrome in a phase I trial of CD19/CD3-bispecific antibody therapy. *Clinical Pharmacology & Therapeutics*. 2020;108(3):579-586.

[14] Mathews Griner LA, Guha R, Shinn P, et al. High-throughput combinatorial screening identifies drugs that cooperate with ibrutinib to kill activated B-cell-like diffuse large B-cell lymphoma cells. *Proceedings of the National Academy of Sciences*. 2014 Feb 11;111(6):2349-54.

[15] Tilly H, Gomes da Silva M, Vitolo U, et al. Diffuse large B-cell lymphoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. *Annals of Oncology*. 2020;31(3):344-359.

[16] Abramson JS, Shipp MA. Advances in the biology and therapy of diffuse large B-cell lymphoma: moving toward a molecularly targeted approach. *Blood*. 2005 Aug 15;106(4):1164-74.

[17] Lacy SE, Barrans SL, Beer PA, et al. Targeted sequencing in DLBCL, molecular subtypes, and outcomes: a Haematological Malignancy Research Network report. *Blood*. 2020 May 14;135(20):1759-71.

[18] Bojarczuk K, Wienand K, Ryan JA, et al. Targeted inhibition of PI3K α / δ is synergistic with BCL-2 blockade in genetically defined subtypes of DLBCL. *Blood*. 2019 Jan 3;133(1):70-80.

[19] Wang L, Qin W, Huo YJ, et al. Advances in targeted therapy for malignant lymphoma. *Signal Transduction and Targeted Therapy*. 2020 Mar 6;5(1):15.

[20] Younes A. Beyond chemotherapy: new agents for targeted treatment of lymphoma. *Nature Reviews Clinical Oncology*. 2011 Feb;8(2):85-96.

[21] Vodicka P, Kleiner P, Truyen M. Diffuse large B-cell lymphoma (DLBCL): early patient management and emerging treatment options. *OncoTargets and Therapy*. 2022;15:1481-1495.

[22] Crump M, Neelapu SS, Farooq U, et al. Immunotherapy strategies in relapsed/refractory large B-cell lymphoma. *The Lancet Oncology*. 2021;22(6):750-765.

[23] Chiappella A, Santambrogio E, Castellino A, Nicolosi M, Vitolo U. Integrating novel drugs to chemoimmunotherapy in diffuse large B-cell lymphoma. *Expert Review of Hematology*. 2017 Aug 3;10(8):697-705.

[24] Morschhauser F, Seymour JF, Kahl BS, et al. Lenalidomide in relapsed or refractory diffuse large B-cell lymphoma. *Journal of Clinical Oncology*. 2019;37(1):48-56.

[25] Maddocks KJ, Ruppert AS, Lozanski G, et al. BTK inhibition with acalabrutinib: an emerging therapy for DLBCL. *Haematologica*. 2021;106(4):987-990.

[26] NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) for B-Cell Lymphomas (Version 4.2024).

[27] Miklos D, Martin T, Wang J. Combining targeted agents with chemotherapy in DLBCL. *Hematological Oncology*. 2022;40(S2):104-111.

[28] Villacampa G, Dienstmann R, Bosch F, Abrisqueta P. Combination of novel molecular targeted agent plus R-CHOP-based regimen versus R-CHOP alone in previously untreated diffuse large B-cell lymphoma (DLBCL) patients: a systematic review and meta-analysis. *Annals of Hematology*. 2021 Dec;100(12):2969-78.

[29] Etrych T, Braunova A, Zogala D, Lambert L, Renesova N, Klener P. Targeted drug delivery and theranostic strategies in malignant lymphomas. *Cancers*. 2022 Jan 26;14(3):626.

[30] Nowakowski GS, Yoon DH, Mondello P, et al. Long-term outcomes from the phase II L-MIND study of tafasitamab plus lenalidomide in patients with relapsed or refractory diffuse large B-cell lymphoma. *Haematologica*. 2023 Oct 1;108(10):2715-2729.