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Abstract

With hydrogen apart from other elements, fractions and multiples of /2, 0.0053-0.0264 corresponding to the radii
ranging between ao/100 and ao/20 (ao is the Bohr’s radius), and 5-26 corresponding to the radii ranging between 4ao
and 49ao were demonstrated; the probability of locating the position (a) and momentum (p) increases with decreasing
radii. The equations for the determination of the fractions and multiples of /2 were derived. Computation gave values
less than and higher than #/2; the latter was found to be restricted to hydrogen atom only. A relation between
uncertainties and pa is for future study.

Keywords: Average ionization energies, Heisenberg uncertainty principle, hydrogen and other selected elements,
reduced Planck’s constant, Rydberg constant.

Graphical abstract

A: The magnitude of y? decreases with increasing magnitude of the radius
(a) or energy level. The values of y? are higher at position closest to the
nucleus as a—0 (B); the opposite is the case as a—w (A).

The curved red and yellow
arrows
signify the plot of 1/0 i.e. ¢*
versus the radius, a. using
all the data for the creation
of C.

The lower limit of uncertainty (©7/2) increases as a — « (C); this takes into
account all atoms, hydrogenic and non hydrogenic atoms. The lower limit
equal to h/2 is strictly for hydrogen only. Note that Prob. stands for
probability (y?) and “a” is the radius. That is not to say that the product of
uncertainties may not be either < or > /2 for hydrogen.
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1. Introduction

So much altercation for and against the Heisenberg uncertainty principle (HUP) abounds in the literature. A recent
preprint report shows that HUP can be proved. [1]. There is also a post-doctoral article on the mathematical aspect of
HUP [2]. The complexity is extremely high and comprehensible only to those with the highest level of all kinds of
mathematics, a typical example that provoked Mills’ [3] opposition against the view that "the electron is a point with no
volume with a vague probability wave requiring that the electron have multiple positions and energies, including
negative and infinite energies simultaneously. It is important to add that it is not just a 75-year issue because, as noted
elsewhere [4], Abu Bakr Muhammade bin Zakariyya (Wikipedia), who may have been around for more than 1000 years,
has a view about the atom that is similar to the objected 20t century notion about the atom. It is noteworthy that most
research regarding HUP has violated the concept of limits in the magnitude of uncertainties [5]. Hence, the question of
HUP with Planck’s constant, as opposed to recent formulations where Planck’s constant seems to be masked, is to be
answered with alterative interpretations with likely applications with the aim of showing that in its original form, HUP
is related to energy functions. The research begins bearing in mind what is regarded as vague [6] but also disputed in
this research with the following objectives: 1) To undertake the derivation of an equation unifying the Heisenberg
uncertainty principle and atomic principles; 2) give evidence that half of the reduced Planck’s constant is strictly for
hydrogen.

2. Theory

In this section, a theoretical overview of views in the literature regarding HUP is undertaken in addition to the most
important aspect, the derivation of equations that make Planck’s constant indispensible; this is in addition to the derived
equation of Planck’s constant, which has a place for the Rydberg constant. Further derivation is applicable to multi-
electron atoms.

2.1. Overview

The HUP [7] is said to describe a trade-off between the error of a measurement of one observable and the disturbance
caused on another complementary observable, such that their product should not be less than the limit set by Planck’s
constant. It has been argued that Ozawa’s 1988 model of position measurement breaks Heisenberg’s relation and
reveals a 2003 [8] alternative relation for error and disturbance that was proved to be universally valid [9]. It would
appear from this statement that Planck’s constant is no more relevant. Before this, let us recall earlier equations related
to HUP. It has been observed that Kennard’s work [10] revealed that Heisenberg was credited with a constraint for state
preparation given as the product of standard deviation (SD), such as:

e(q’) g(p") ~ h, 1)
where g(q') is the "mean error” of position measurement and ¢(p') is the mean error of the simultaneous momentum
measurement, which caused a "discontinuous change" of the momentum; h is the usual Planck’s constant. This follows

Heisenberg’s derivation of what was referred to as the "standard deviation for Gaussian wave functions, later called
minimum uncertainty wave packets." [11].

o(q’) o(p’) = 1/2, (2)
Next is the inequality credited to Kennard [10] and given as:
o(q’) o(p’)2h/2, (3)

By the inequality (In-Eq. (3)) the lower bound of the relation (Eq. (1)) is set as:

e(q') e(p')2h/2, (4)
Meanwhile, Eq. (3) in its rewritten form [12] is:

o(q) o(p)2h/2, )
where respectively, the standard deviations ¢ (q) and o (p) of the position g and the momentum p are defined, for

instance, by 6{q%)-c{q)? and o{p?)-c(p)? and ...) denotes mean value in a given state. Then, is the 1929 generalized form
of Eq. (3) given by Robertson [12]:
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o(A) s(B)=l ([A, B /2 (6)

where A and B are arbitrary pair of observables and [A, B] = AB-BA. Then comes the arbitrary form of
Heisenberg’s relation given as:

e (A)n(B)=I ([A B]) /2 (7)

Equation (7) is regarded as having been accepted to hold for the error € (4) of any A-measurement and the disturbance
1 (B) caused by that measurement on an observable B; the relation is observed to have been proven only in limited
circumstances [8,13,14].

The question of joint measurements seems slightly intelligible because, with an appropriate technology, one can
simultaneously measure the position and momentum of an electron without perturbation and associated dislocation,
not only in terms of a change in position but also in terms of a change in momentum. Therefore, describing the following
view (one of three views) as vague [6] seems inappropriate. It is impossible to prepare states in which position and
momentum are simultaneously arbitrarily well localized.

If twenty "measurements” were taken for the determination of the first ionization energies of any atom in its
ground state, it is not unlikely that some of the values may be > the average while some are less than the average; the
likelihood of very few being equal to the average value cannot be ruled out entirely. Those values that are above average
show that the electron may be closer to the reference point, the atomic nucleus, contrary to those that are lower than
average. These are expressions of position relative to the nucleus, and from the same measurement, the momentum can
also be clearly quantified. This looks like joint measurements of position and momentum, which according to Busch [6]
are in fact possible with arbitrary accuracy, but yet it is like using one "primitive catapult-powered stone to kill two
birds". Now here comes Ozawa’s alternative relation for error and disturbance that was theoretically proved to be
universally valid: According to the author, any measurement of an observable 4 in a state ly) (a layman like the author
of this unacclaimed paper may wish to know the kind of state) with an error ¢(4) causes the disturbance n(B) on another
observable B and satisfies the equation:

e(A)n(B) + e(A)s(B)+o(An(B)=l ([4, B]) |/2 (8)

where 6(4) and o(B) stand for the SD in the state |\|/> while the error-disturbance product, ¢(4)n(B), is K the lower
bound of Eq. (7). It was found that the outcome of the experiment conducted to evaluate Eq. (8) validated Ozawa'’s
equation while the Heisenberg equation broke down, or rather, was violated [9]. The error €(A) is the root mean square
of the difference between the “meter observable M” after the interaction and the “meter observable A” before the
interaction. The disturbance n(B) is the root-mean-square of the change in the observable B during the measuring
interaction. These definitions of error and disturbance are taken to be generalizations of their classical definitions [9].
These definitions are despite the equations £(A=Z) = 2sinf and n(B=X) =2sin ((n/2)-0) expressing €(A=Z) and n(B=X),
respectively. In trigonometry, the sine, cosine, tangent, cotangent, cosine, secant, etc. are ratios that cannot be translated
into units of energy given by he(f) where ¢(f) is the error in measured frequency.  Alternatively, one can assume the
relation ho(f) where o(f) is the uncertainty in the measured frequency. Besides, in statistics, uncertainty and error (the
standard error of the mean in particular) are not the same, even if ordinary error may coincidentally be equal to
uncertainty. Following the formalism given as [9]:

n(p) ={p?)”* 2 o(p) 9)

where (...) is the post measurement mean value [9] and the counterpart,

n(q) =<g?* =0(q), (10)

One can also imagine an electron that is in motion within the bounds of the atom under the influence of the nucleus,
with several positions whose distance from the nucleus may vary but not enough to escape the nuclear influence.
Besides, Eqs (9) and (10) give the impression that o(p) and o(q) are respectively, natural consequences of the
disturbance represented by n(p) and n(q). However, a question that needs to be answered is whether the mean can ever
be equal to uncertainty, let alone be greater. It may be necessary to focus on the consequences. This scenario is relevant
to an electron that has been perturbed.
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2.2. Background derivations

Taken as an atom, a round three-dimensional space gives an area of a sphere given as 4na? (where ‘a’ is the average
ionization potential-dependent radius of any atom other than hydrogen). Whatever distance between the electron and
the nucleus in the course of an experimental measurement of its ionization potential, one can consider different values
of "a," including the Bohr’s radius (ao exclusively reserved for hydrogen), such that:

n(a? an(aty” an
(T )me =——m 2 ?mec(az) (11)

where t may be taken as the duration of measurement.

Equation (11) or its second aspect, the In-Eq. (11) (note that In-Eq. stands for inequality or not equal) can be related to
the Planck’s constant (reduced Planck’s constant) just as the energy of a randomly moving molecule of a gas can be
related to the same constant as follows: 155 = ®h/m,v, where Las, mg vg and © are the de Broglie wave length, average
molecular mass of any gas, speed, and randomness factor, an integer that is > 1[15]. A dimensionless quantity cannot
be appropriately compared with a dimensional quantity, contrary to the suggestion that where HUP failed (became
violated or flawed), Ozawa was successful or valid as guided by Eq. (8). The error aspect of Eq. (11) is then,

2 4,7
D, = 20, = P e(a2) /Dy (12)

In Eq. (12), ®c-a is the error coefficient (it may either be < or > 1; a ratio of any reference value if known or the mean to
the observed as applicable to the radius) whose magnitude would depend on ai. Its relevance can be appreciated in Eq.
(13) below, which points to the fact that error and uncertainty are not the same. Other variants of Eq. (11) can be derived
as follows: Bearing in mind the original Heisenberg inequality (HIE), it would appear that:

Zmee(a?) = D qh/2 (13)
Zmeo(a?) = h/2 (14
Meanwhile, as in a preprint [16], ai is related to wavenumber according to the following equations:
V =na,(2Efm,)”/h*Rc a;, (15)
V=n/2na; (16)

Therefore, error and uncertainty dovetail into error and uncertainty in the wavenumber, which is equivalent to error
and uncertainty in momentum. Hence, one can rewrite Eqs (13) and (14) as follows:

TLZ
= mee(V2) = dh (17)

2
n- -2y —
Tnmecs(V )=~h (18)

Recall the equation of a wavenumber given as 1/Ae= meve/h (/Le and ve are the de Broglie wave length of the
electron and the speed of the electron, respectively; for the sake of simplicity, 1/Ae= p/h)); substituting p/h into Eqgs
(17) and (18) gives, after rearrangement, the equation of error and uncertainty in the reciprocal of the momentum or
the speed given that the rest mass or, if preferred, the reduced mass of the electron is constant.

e(p~?) = @, t/2n* m,h, (19)
In terms of speed, Eq. (19) becomes:

e(W,?) = O, tm,/2n? h, (20)

o(p~?) =1/2n’>m,h, (21)
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c(v;?) =1m,/2n%h, (22)
In the absence of a reference, the error may be taken as the difference between the measured momentum or speed and
the corresponding arithmetic mean. The standard deviation needs input from all the errors for its determination.
However, the question that can be answered is: "What is the possibility that the inverse of Eqs (19) to (22) leads to?"
e(p?) = 2n’*myh/d, 1, (23)
where @_,,, is the error coefficient applicable to p and,
e(w?) = 2n*h/ D, Tm,, (24)

where @, is the error coefficient applicable to ve.

o(p?) = 2n’m,h/7, (25)

c(v?2) = 2n%h/t m,, (26)

In statistics, population is very important, according to which either one adopts parametric or nonparametric
methods for the determination of standard deviation. Adopting the parametric method as a preferred option demands
that the number of determinations be > 6; representing the number of determinations as, ¢ one can take the root of the
mean of the errors and uncertainties in the squared variables as follows:

(Z‘b&ipz)) (znTmeh) (Dg__l,/zp, (27a)
N
(4 < (o 0y =
(B) " 1%, - (o) = (2met)”, (28)

The same procedure applies to ve, which is set aside in preference to p for now. Meanwhile, a similar procedure should
be applied to Egs (13) and (14) to obtain the following:

2 K 1
(%) - (%) " (29)

Now, one can invoke “Heisenberg energy principle” (HEP) and HUP in order to derive the following equations: Beginning
with Eqs (28) and (30), one gets:

(M) % (M) @)% = (6(p») " (c(a®)" = (£ meh)y( = )/ (31)

2¢ o 4 n2mg
The position in this research is to remain closely as a student (rather than high-ranking science scholars imbued
with "intimidating" postdoctoral mathematics) of Heisenberg and Bohr, on account of which one bears in mind the
rather general expression, AxAp=fi/2, and Egs (15) and (16), whose combination as in the literature can give a variant

of the equation of the Rydberg constant, and in this research the equation of Planck’s constant in which Bohr’s radius
plays a key role. Therefore, Eq. (31) can be rewritten in simpler forms to give:

oL [(2®) ") () )]/ B 1 @,.0) % =nh/2, (34)

(6»)"(c(@®)” =nh/2, (35a)
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Two clear statements, that the experimentally generated data clearly demonstrate that, 0Ozawa'’s relation is always valid,
whereas Heisenberg’s relation is false for all measurement strengths and the confirmation that the “three-state-
method” successfully determines the error and the disturbance of the photonic measuring apparatus [9] seem to lend
credence to Hill's view [3]; such view is that the HUP is wrongly interpreted as: the uncertainty in the measured
momentum times the uncertainty in the measured position must be no less than # as given by AxAp= #/2; yet the same
author seems to agree that the HUP gives a lower limit to the product of the uncertainty in the momentum and the
uncertainty in the position—not the product of the momentum and the position; the HUP is the mathematical expression
for the statistical error in the variables of the wavefunction such as those assigned to the position and momentum of
the electron. This seems to go with the issue of error in measurement in Baek et al.’s work [9], but the inequality has no
place for Planck’s constant in the enabling mathematical expression.

Similar to the experimental study [8] containing few mathematical equations rich in set theory and an all-out
mathematical exposition of different kinds, including much about set theories, is the works of Busch [6] and Yang et al.
[2], which seem to give credence to Mill’s [3] claims that despite its successes, after decades of futility, quantum
mechanics and the intrinsic HUP have not yielded a unified theory, are still purely mathematical, and have yet to be
shown to be based in reality. It is not all about the experimentalist, Ozawa, but similar experimentally based opinions
have been held for years. The "contractive states," the product of the free evolution of a subclass of photon coherent
states, caused a narrowing of the position uncertainty in breach of the standard quantum limit [17]. The conventional
bounds to the precision of measurements, such as the shot noise limit or the standard quantum limit, are regarded as
not being as fundamental as the Heisenberg limit, and as such, they can be beaten using quantum strategies that explore
"quantum tricks" such as squeezing and entanglement [18]. The perspectives of high-ranking specialists are not clearly
understood by others. Exploring a precision position measuring apparatus has put into question the HUP, or better yet,
violated the HUP [19].

3. Materials and Methods

The research is theoretical and computational. However, the key data for evaluating the derived equations where
appropriate were experimental data found in common standard text books and on the internet encyclopedia.

4., Results and discussion

This section begins with the understanding that error and uncertainty are not the same, such that this and any other
views in the literature demand reinterpretations. Currently, there is the issue of the violation of HUP; this would have
been unnecessary if a rigid adherence to the undefined upper limit and the possibility of equality of the product of
uncertainties (PUCs) and half of the reduced Planck’s constant were not the case. In a situation where c(p) = [#/2]/o(q),
e(p) = drh/2¢(q) and 4mnme [e(a?)]”/t = [denalt/2]/[€2)]”, as implied in Eqs (9), (10) and (11) respectively, the
uncertainties must be between « exp. (-17) and > exp. (-17) and this includes the relation, 4nme [c(a?)]*/t =
[7/2]/[c(p?)]* where in particular a falls within the sphere of influence of the nucleus and T must be < 1. Where 41tme
[c(a?®)]*/t = [h/2]/[c(p?)]” the uncertainties must be very high where in particular a = o even if p is low. Leveraging
on these pieces of information, one can consider three classes of perturbation (disturbance), viz., lower energy level
oriented perturbation (LOP), partial ionization (higher energy level) oriented perturbation (HOP), and total ionization
oriented perturbation (TOP); the role of energy level has become evident in that if an electron remains in an unspecified
point in space at a particular energy level, the equality in Eqs (34) and (35a) stands if o(p) and c(q) are respectively, <
exp. (-17) and > exp. (-17) and vice versa.

If, on the other hand, the errors are infinitesimal, the PUCs should be « # /2. With electron capture, there is no question
of where the electron is; there cannot be measurement error, unlike when the location of an electron is at an infinite
distance from the nucleus. The momentum cannot be equal to zero, though it may be low. However, as long as a 3-
dimensional space is available for an electron at any energy level, while it may not escape the attraction of the nucleus,
it cannot be assumed to be a planner in its region of motion. Thus, the product of the uncertainties may also be «< /2.
Therefore, there are two possibilities. Equation (35b) illustrates this issue, and it may be very illustrative of what
happens in metals, specifically the transition elements in which the valence shell electrons are relatively free. PUCs of
position from nucleus and momentum could be very high and greater than #/2; PUCs may tend to # /2 if not = A /2.

(c(@?))”(c(a®)” = nh/2, (35b)
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If, for whatever reason, an electron ascends to a higher energy level while losing momentum, the AxAp is very
likely to be > i/2. Not just for the fancy of it, Eq. (35a) or (35b) can be rewritten as:

(c(@®)*(c(@®)*/(n+1) > /2, (36)

where i is any integer such that n+i is > 0 and 21 depending on the value of n. At a lower energy level, momentum is
high, so any measurement in that regard may likely yield a small uncertainty, instrumental error notwithstanding. If the
electron moves to a lower energy level, AxAp may be < fi/2; there is a gain in momentum because the distance from the
nucleus has decreased. Then the inequality takes the form:

(o) (c(@®)”*/(n—1i) < /2, (37)

Again, i is such that (n-i) is < nn (the highest energy level for the atom in its ground state). Note that if all measurements
are error-free, the product of zero and either of the two measurements gives zero, which is < #/2. So far, energy has
been introduced into HUP theory, but what needs to be understood is that a qualitative analysis of the necessary
equations and inequalities has been carried out. Besides, #/2 is the middle (or better still, the median) limit of
uncertainties, as opposed to being the lower limit referred to in the literature [3]. This is clarified by the following
derivations:

It is not all about violation; concern for principle should prevail. There is no doubt that there is a theoretical
and even a practical limit, such as that defined when ionization takes place: where does one locate an electron that has
been expelled from nuclear influence? When an electron is expelled, the energy level is undefined (infinite), and it is
designated as ne«; thus,

(o) (c(@®)”/n.,>0> n/2, (38)

Note that as n = o, the speed of the electron outside the nuclear influence does not = oo; it may tend to zero outside any
electrostatic influence. So far in this analysis and discussion, the value of the initial n has not been indicated. Here, one
can state preemptively that n belongs to hydrogenic atoms and ions. The ground for this assertion is as follows:
Meanwhile, from Eqgs (15) and (16), as in a preprint [16], the Planck’s constant is given as:

Y
h= @mED* (32) (39)
Then, the reduced Planck’s constant is given as:
%
h= (/2" (52) (40)

It is instructive to state that, based on Bohr’s equation for the average ionization energy of hydrogen, h, is also given
as: h = (e?/¢,)(m,/8 Eyy)*. The difference is, of course, the absence of R in the latter. The interest in Eq. (40) lies in
showing that Bohr’s principle expressed in the average ionization energy of hydrogen and Bohr’s radius and partly with
the Rydberg constant, R, has a relationship with HUP as follows:

(6@®)"(o(a®)" = n(m E3/2* (222)" 2, (41)

TR C
Based on the Planck constant-free equation [4], for the determination of the radius of any atom, Eq. (41) can be

written as follows: First, the Bohr’s radius is given as: ao = €2/8 Enn €0 which has always been because Zefr is = 1 (this is
unlike multi-electron atoms). Then substitute into Eq. (41) to obtain the following, after rearrangement:

S (ns)%zi(;)% (EH_my (42)

T \ggReoC 128

Note that the right-hand side of In-Eq. (42) is = (n3)*2 h/2. However, the value of n is one because Eq. (42) is primarily
for hydrogenic ions or atoms. The version for a multi-electron or multi-proton hydrogenic atom, where n is > 1, is
derived as follows: For the later, the equation is: ai = e2n/8 (Ei En)* eo; a generalization of Eq. (41) means that the radii
of multi-electron atoms and ions are relevant such that:

Ya

(o(P))(oa®)) = (roy £ () (B (+3)

21 \ggRooC 128E;
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Although Eq. (43) specifies multielectron atoms, it is nevertheless a general one as long as n is equal to one (and Ei is
equal to Eu for hydrogen) for hydrogenic atoms and ions. The point is clear considering one-proton hydrogenic atoms,
multiproton hydrogenic ions, and multielectron atoms. It can be clearer if one rearranges Eq. (43) in a way that shows
that different atoms should possess different multiples of half of reduced Planck’s constant, as
follows:

1,
(1) £ ()" () (44)
~\Ej 21 \ggRooC 128 ’

All parameters in Eq. (44) are fundamental constant except n and Ei.

As shown in Table 1, one-proton hydrogenic atoms, a single energy level multielectron atom such as helium,
and all multiproton hydrogenic ions show values that are < 1/2: This means that the uncertainties are likely to be very
low. Precision in measurement is one aspect most likely where the electron (s) is strongly under the influence of the
nucleus. Far away from the nucleus, precision measurement could be very difficult, if not impossible. Table 1 shows
quantitative evidence with large mass-number atoms. Besides, the enabling (in) equalities are given as:

z"ﬁwe( En )/2(’" )/ (45)

2n goRo C 1§ 128E;

where n-«, ni and Ei are energy level towards infinity, initial nth energy level and associated ionization energy for this
purpose. The model concerns positions less than infinity within the sphere of highly attenuated influence of the nucleus,
as in metals with free valence orbital electrons; distances much longer than the nucleus-valence shell distance are also
envisaged where the attractive kinetic energy is very low. To preclude any doubt (not for the sake of unimpressive
numbers), other (in) equalities are:

2 Y2 Ya
< Tomt ()T M) (46)
2n goRo C 1 128E;
~ Mo (_En )" (e ) 47)
~ 21 \eoReocny/ \1285) ’

Reviewing Table 1, one sees clearly that different elements differ in the magnitude of the minimum product of
uncertainties because of their differences in ionization energies, including those of the same period. The values range
between = 0.9 and 4 times half of the reduced Planck’s constant with the 1st ionization energy; they are between = 0.7
and 3 times half of the reduced Planck’s constant with the 2nd jonization energy for some elements, H and He through F.
Between 7t and 8th pgn, the minimum product of uncertainties is between 42 and 57 times half of the reduced Planck’s
constant. Among the period III elements, the minimum product of uncertainties ranges between = 3 and 7 times half the
reduced Planck’s constant with the 1st jonization energy, while it is between = 2 and 5 with the 2rd jonization energy
(Ne through Ar). Between 8t and 9t pqn, it is * between 40 and 57 times half the reduced Planck’s constant. All the
values of the minimum product of uncertainties for the heavier elements (e.g., I, Ba, Mo, etc.) were correspondingly >
the values for their lighter-weight counterparts. All the values for positions where the Zt jonization is the case were
less than the minimum product of uncertainties (0.527 exp. (-34) ] s), which is strictly for hydrogen, excluding any other
hydrogenic ion because of the higher atomic number, Z.
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Table 1 Fractions and multiples of half of the reduced Planck’s constant (the minimum product of uncertainties) at
different ionization energies

Period II atoms H He Li Be B C N 0 F
1st® h /2 0.527 | 0.455 1.879 1.638 1.687 1.563 1.466 1.490 1.401
(Js)/exp.(-34)
2@ h/2 - 0.373 0.343 1.386 1.278 1.227 1.176 1.177 1.131

(Us)/exp.(-34)
(n+6)th © h/2 25.825 | 22.272 | 30.060 | 26.210 | 26.991 | 25.040 | 23.455 | 23.842 | 22.418
(Us)/exp.(-34)

7@ h/2 - 0.373 | 0.3043 | 0.264 | 0.236 | 0.215 | 0.199 | 0.186 | 0.176
(Js)/exp.(-34)
Period III atoms Ne Na Mg Al Si P S Cl Ar

1st®@ h/2 1.328 | 3.493 | 3.163 | 3.364 | 3.112 | 2.889 | 2931 | 2.770 | 2.640
(Js)/exp.(-34)

2@ h/2 1.131 | 1.092 | 2.671 | 2.525 | 2.624 | 2.498 | 2391 | 2.381 | 2.294

(Js)/exp.(-34)
(n+6)th © h/2 21.253 | 31.436 | 28.461 | 30.267 | 28.007 | 25.997 | 26.379 | 24.923 | 23.757
(Js)/exp.(-34)

Zth @ h/2 0.167 | 0.159 | 0.152 | 0.146 | 0.141 | 0.136 | 0.132 | 0.128 | 0.124
(Js)/exp.(-34)
Heavy atoms - - Ba I Mo Rb Br Fe Cu

1st@ h/2 - - 9.849 | 6.296 | 6925 | 7915 | 4.365 | 4.830 | 4.857
(Js)/exp.(-34)

20d @ h/2 - - 8364 | 5411 | 4.040 | 3.536 | 3.756 | 4.037 | 2.478

(Js)/exp.(-34)
“®” can either be > or < one as the case may be and differs for different elements due to differences in ionization energies, and principal quantum
numbers; it must also be positive.

The possibility of fractional energy levels seemed to have been recognized [20]. To this end, the following equation,
derived as follows, can enable its determination given any reduced Bohr’s radius. The equations in the literature [4] and
the Coulomb equation are used for the derivation.

nzh? o2

Eigrp) = = (48)

8n?aZme  8ngoa,

where ar, ng, and Ei++) are the reduced Bohr’s radius (which may be reduced by two or more folds), the fractional energy
level, and high energy closer to the nucleus. The equation of nris:

ne = (Tneﬁar)l/z e/h, (49)

€0

With values of nrand substitution into any of the preceding relevant equations, the values of (n3)* #i/2 can be calculated;
they could be less than, greater than, or approximately equal to PUCs. The calculated values of (n3)* /2 only tell one
that the PUCs may be lower, higher, or approximately equal to #/2. Table 2 illustrates this issue using a hypothetical
approach using hydrogen. Regardless of the written form in the literature, the relationships are as follows:

Q%) —(@)*)*((P?) — o(P)*)” and [(Z Q} — (X Q)*/ns)” /na][(XQF — (X Q)?/ns)”/ng] give the same value of
PUC (5.9395 exp. (- 40) ] s) which is « #/2. The values, Bohr’s radii, and average ionization energies used for
illustrations are displayed in Table 2. Furthermore, Table 2 illustrates clearly the assertion that the closer an electron
is to the nucleus, the lower the uncertainties in position and momentum. It is between 0.0264 and 0.0053 PUCs,
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corresponding to between ao/20 and ao/100 for H; 0.0114 and 0.00227 for He; 0.0443 and 0.00886 for Li; and 0.02895

and 0.00579 for Be.

Table 2 Factional energy levels and the fractions of half of reduced Planck’s constants

H H ar (exp.(-11) m) H He Li Be
En ao (exp.(-11) m ao/20 ni=0.2236 | nr=0.1581 | nr=0.2582 | nr=0.2236
(k] /mol).

1313 5.2885 ©=0.0264 | ©=0.0114 | ©=0.0443 | ©=0.02895
1314 5.28454 ao/40 nr=0.1581 | ne=0.112 | nr=0.1826 | nr=0.1581
1317 5.27251 ©=0.0132 | ©=0.0083 | ©=0.0221 | ©=0.0145
1312 5.29261 ao/60 ne=0.1291 | nr=0.0913 | ne=0.1491 | nr=0.1291
1318 5.26851 ®=0.0088 | ®=0.0038 | ®=0.0148 | ©®=0.0097
1304 5.32508 ao/80 ne=0.112 | nr=0.0792 | nr=0.1291 | n¢=0.1118
1309 5.30474 ®=0.0064 | ®=0.0029 | ©=0.0111 | ®=0.00724
1308 5.30879 ao/100 ne=0.0999 | nr=0.0701 | ne=0.1155 | nr=0.09996

- - ®=0.0053 | ®=0.00227 | ®=0.00886 | ®=0.00579

0, nr, and ar are the positive fraction (<1), fractional energy level (quantum number), and reduced Bohr’s radius: NB: Hypothetical values were used
for illustrations. 7/2=0.5270469322 exp. (-34) ] s which is exclusively for hydrogen. The values of the fractions of half of the reduced Planck’s

constant are given as: @ 7 /2.

The concept of relative uncertainty (the ratio of ® & /2/ A /2=0) introduced in this research is intended to mean the
probability (or probability density, y?) of locating the position and momentum without resorting to the popular
Schrodinger wave function and associated mathematical formalism. As Table 3 shows, the y?2 values could be as high as
between = 20 and 99 for H; ~ 46 and 232 for He; » 12 and 59 for Li; and 18 and 91 for Be. These values have implications
for the physical and chemical properties of elements that make them amenable to one form of application or another.

Table 3 Relative uncertainty illustration using some elements at an arbitrarily chosen reduced Bohr’s radius for

hydrogenic atoms

ar (exp.(-11) m) | H He Li Be

ao/20 ne=0.2236 | nr=0.1581 ne=0.2582 | nr=0.2236
v2=19.964 | y2=46.232 v2=11.897 | ¢2=18.205

ao/40 nr=0.1581 | nr=0.112 ne=0.1826 | nr=0.1581
v2=39.928 | y2=63.500 | y2=23.848 | y?=36.348

ao/60 nr=0.1291 | nr=0.0913 nr=0.1491 | nr=0.1291
y2=59.892 | ¢2=138.697 | y2=35.611 | y?=0.54.335

ao/80 nr=0.112 ns=0.0792 nr=0.1291 | nr=0.1118
y2=82.417 | y?=181.740 | y?=47.482 | y?=72.797

ao/100 ns=0.0999 | nr=0.0701 ns=0.1155 | ne=0.09996
v2=99.443 | y2=232.179 | y2=59.497 | ¢2=91.027

2 is the relative uncertainty, otherwise christened "probability,” of locating the position of an electron relative to the nucleus and its momentum,
precluding the wave notion for the purpose of this research and for descriptive convenience.

There is a need to add that, the expansion of metals in hot weather is a result of the expansion of the 3-dimensional
space available to them in the metallic lattice. The opposite is true upon exposure to cold weather. The free electrons
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become very mobile in hot weather, such that the uncertainties of the free electrons become very high. Indigestible food
substances, like resistance starch, could find an explanation in the fact that where the molecular orbital electron cannot
assume higher PUCs, the crystal structure may defy liquefaction; the electrons may be closer to the nucleus.
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Figure 1 Variation of the minimum product of uncertainties (MPUCs, ® #/2) versus the square of the effective nuclear
charge. The different values of MPUCs were calculated for each element, from hydrogen to neon, at a given principal
quantum number, pqn; EFF’ and NUC’ denote effective and nuclear, respectively. The effective nuclear charge is
determined as described in the literature [21]
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Figure 2 The variation of relative uncertainty otherwise christened probability with square of the effective nuclear
charge (EFF’ NUC’ Charge). Prob. and RU stand for probability and relative uncertainty respectively both of which are
symbolized as: (y?)

With different elements, the minimum product of uncertainties (MPUCs i.e. ® #/2) shows trend consistent with the
variation in different ionization energies within the same period (Figure 1). The fall of the curve indicates a decrease in
® h/2 while a rise indicates higher ® /2 values in line with lower ionization energy. It cannot be overemphasized to
opine that any atom whose outermost shell electron has a high MPUCs, or ®%/2, must also display a low probability
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(w?) of being located with its momentum precisely; the tendency to a precise position and momentum measurement is
enhanced given a very low © #/2, with a concomitant high value of 2. This is illustrated in Figure 2. The sharp rises in
y?2 correspond to low values of ® /2

Values > h/2 are shown by multielectron higher energy level atoms for clear reasons. It is obvious that larger atoms
present higher uncertainty with respect to the outermost orbital or valence electron (s) due to the fact that the nuclear
attraction for the electrons is weaker than for the inner electrons, which have much less freedom of motion. If n and Ej,
respectively, are 1 and En (average ionization energy of hydrogen), Eq. (44) reproduces half of reduced Planck’s
constant. The fact that values ># /2 exist for some atoms means that the uncertainties for position and momentum for
such atoms are very high.

Schrédinger quantum mechanics (SQM) or the Schrédinger equation (SE) has been described as one that successfully
explains the hydrogen atomic orbital and residence of a single electron but fails where a multi-electron atom is the case.
One may wish to comment that reference to atoms is closer to physical reality than recent experimental work [9], whose
special method does not give any impression that either hydrogenic atoms or nonhydrogenic atoms or both can be
referred to. This is unlike this study, in which, in addition, SE is inconsequential.

In his 1927 paper entitled (in Germany), Uber den anschaulichen Inhalt der quantentheoretischen kinematic und
Mecanik [7], the translation being the physical content of quantum kinematics and mechanics, names such as Bohr and
Planck were stated; if one is not mistaken, Schréodinger was stated as to imply that quantum (or wave) mechanics and
associated SE were mentioned text-wise. But SE is known to fail where multi-electron atoms are of interest. There is no
ambiguity in the original Heisenberg equation, though the stereotypical limits on the upper and lower values of the
product of two uncertainties have been refuted [9, 22]. Be that as it may, the research has come to the realization that
these limits are not necessary if the energy levels of real atoms of elements as well as the kinetic energy of any electron
at any energy level are considered.

The application of knowledge can drive the desire for the acquisition of more knowledge. The transfer of electrons in
respiration and photosynthesis, digestion of resistant starch, expansion of metals, and the reactivity of the pi covalent
bond electrons may have interpretations based on HUP. In this study, flexible limits are conditionally recognized in that
the electron in an atom in its ground state presents a different physical characteristic from the same atom in an excited
state. Hence, in stating the different inequalities, one takes into account possibilities such as an electron descending to
a lower energy level, an electron transiently taking up positions between energy levels, and an electron undergoing
partial expulsion, total expulsion, or ionization. This justifies Eqs (35a) to Eq. (38) with an increasing supporting view
based on the experimental finding of Mills [20].

5. Conclusion

The equations for the determination of both fractions and multiples of /2 were derived. The fit was accomplished by
relating Planck's constant to atomic properties. Such properties are average ionization energies and principal quantum
numbers. The research shows that f/2 is strictly for hydrogen. Higher multiples of 7#/2 show that the uncertainties
(position (a) and momentum (p)) could be very high, and vice versa. Fractions of and multiples of &/2 have applications
in the elucidation of the chemical and physical properties of matter as well as in biological processes.
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