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Abstract 

With hydrogen apart from other elements, fractions and multiples of ℏ/2, 0.0053–0.0264 corresponding to the radii 
ranging between a0/100 and a0/20 (a0 is the Bohr’s radius), and 5-26 corresponding to the radii ranging between 4a0 
and 49a0 were demonstrated; the probability of locating the position (a) and momentum (p) increases with decreasing 
radii. The equations for the determination of the fractions and multiples of ℏ/2 were derived. Computation gave values 
less than and higher than ℏ/2; the latter was found to be restricted to hydrogen atom only. A relation between 
uncertainties and pa is for future study. 
Keywords: Average ionization energies, Heisenberg uncertainty principle, hydrogen and other selected elements, 
reduced Planck’s constant, Rydberg constant. 
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1. Introduction 

So much altercation for and against the Heisenberg uncertainty principle (HUP) abounds in the literature. A recent 
preprint report shows that HUP can be proved. [1]. There is also a post-doctoral article on the mathematical aspect of 
HUP [2]. The complexity is extremely high and comprehensible only to those with the highest level of all kinds of 
mathematics, a typical example that provoked Mills’ [3] opposition against the view that "the electron is a point with no 
volume with a vague probability wave requiring that the electron have multiple positions and energies, including 
negative and infinite energies simultaneously. It is important to add that it is not just a 75-year issue because, as noted 
elsewhere [4], Abu Bakr Muhammade bin Zakariyya (Wikipedia), who may have been around for more than 1000 years, 
has a view about the atom that is similar to the objected 20th century notion about the atom. It is noteworthy that most 
research regarding HUP has violated the concept of limits in the magnitude of uncertainties [5]. Hence, the question of 
HUP with Planck’s constant, as opposed to recent formulations where Planck’s constant seems to be masked, is to be 
answered with alterative interpretations with likely applications with the aim of showing that in its original form, HUP 
is related to energy functions. The research begins bearing in mind what is regarded as vague [6] but also disputed in 
this research with the following objectives: 1) To undertake the derivation of an equation unifying the Heisenberg 
uncertainty principle and atomic principles; 2) give evidence that half of the reduced Planck’s constant is strictly for 
hydrogen. 

2. Theory 

In this section, a theoretical overview of views in the literature regarding HUP is undertaken in addition to the most 
important aspect, the derivation of equations that make Planck’s constant indispensible; this is in addition to the derived 
equation of Planck’s constant, which has a place for the Rydberg constant. Further derivation is applicable to multi-
electron atoms. 

2.1. Overview 

The HUP [7] is said to describe a trade-off between the error of a measurement of one observable and the disturbance 
caused on another complementary observable, such that their product should not be less than the limit set by Planck’s 
constant. It has been argued that Ozawa’s 1988 model of position measurement breaks Heisenberg’s relation and 
reveals a 2003 [8] alternative relation for error and disturbance that was proved to be universally valid [9]. It would 
appear from this statement that Planck’s constant is no more relevant. Before this, let us recall earlier equations related 
to HUP. It has been observed that Kennard’s work [10] revealed that Heisenberg was credited with a constraint for state 
preparation given as the product of standard deviation (SD), such as: 

      (qʹ) (pʹ) ~ h,                           (1) 

where (qʹ) is the "mean error" of position measurement and (pʹ) is the mean error of the simultaneous momentum 
measurement, which caused a "discontinuous change" of the momentum; h is the usual Planck’s constant. This follows 
Heisenberg’s derivation of what was referred to as the "standard deviation for Gaussian wave functions, later called 
minimum uncertainty wave packets." [11].  
                            (qʹ) (pʹ) = ℏ/2,                  (2) 
 
Next is the inequality credited to Kennard [10] and given as: 
 
                            (qʹ) (pʹ)≥ℏ/2,                                (3) 
 
By the inequality (In-Eq. (3)) the lower bound of the relation (Eq. (1)) is set as: 
 
      (qʹ) (pʹ)≥ℏ/2,                                       (4) 
 
Meanwhile, Eq. (3) in its rewritten form [12] is: 
 
      (q) (p)≥ℏ/2,                                               (5) 
 
where respectively, the standard deviations  (q) and  (p) of the position q and the momentum p are  defined, for 
instance, by q2−q2 and p2−p2 and … denotes mean value in a given state. Then, is the 1929 generalized form 
of Eq. (3) given by Robertson [12]: 
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      (A) (B)≥[A, B]/2                                (6) 
 
where A and B are arbitrary pair of observables and [A, B] = AB−BA. Then comes the arbitrary form of  
Heisenberg’s relation given as: 
 
       (A) (B)≥[A, B]/2                               (7) 
 
Equation (7) is regarded as having been accepted to hold for the error  (A) of any A-measurement and the disturbance 
 (B) caused by that measurement on an observable B; the relation is observed to have been proven only in limited 
circumstances [8,13,14].  

           The question of joint measurements seems slightly intelligible because, with an appropriate technology, one can 
simultaneously measure the position and momentum of an electron without perturbation and associated dislocation, 
not only in terms of a change in position but also in terms of a change in momentum. Therefore, describing the following 
view (one of three views) as vague [6] seems inappropriate. It is impossible to prepare states in which position and 
momentum are simultaneously arbitrarily well localized.  

 If twenty "measurements" were taken for the determination of the first ionization energies of any atom in its 
ground state, it is not unlikely that some of the values may be > the average while some are less than the average; the 
likelihood of very few being equal to the average value cannot be ruled out entirely. Those values that are above average 
show that the electron may be closer to the reference point, the atomic nucleus, contrary to those that are lower than 
average. These are expressions of position relative to the nucleus, and from the same measurement, the momentum can 
also be clearly quantified. This looks like joint measurements of position and momentum, which according to Busch [6] 
are in fact possible with arbitrary accuracy, but yet it is like using one "primitive catapult-powered stone to kill two 
birds". Now here comes Ozawa’s alternative relation for error and disturbance that was theoretically proved to be 
universally valid: According to the author, any measurement of an observable A in a state  (a layman like the author 
of this unacclaimed paper may wish to know the kind of state) with an error (A) causes the disturbance (B) on another 
observable B and satisfies the equation:  

            (A)(B) + (A)(B)+(A)(B)≥[A, B]/2                               (8) 

where (A) and (B) stand for the SD in the state  while the error-disturbance product, (A)(B), is ≪ the lower 
bound of Eq. (7). It was found that the outcome of the experiment conducted to evaluate Eq. (8) validated Ozawa’s 
equation while the Heisenberg equation broke down, or rather, was violated [9]. The error (A) is the root mean square 
of the difference between the “meter observable M” after the interaction and the “meter observable A” before the 
interaction. The disturbance (B) is the root-mean-square of the change in the observable B during the measuring 
interaction. These definitions of error and disturbance are taken to be generalizations of their classical definitions [9]. 
These definitions are despite the equations (A=Z) = 2sin and (B=X) =2sin ((/2)−) expressing (A=Z) and (B=X), 
respectively. In trigonometry, the sine, cosine, tangent, cotangent, cosine, secant, etc. are ratios that cannot be translated 
into units of energy given by h(f) where (f) is the error in measured frequency.  Alternatively, one can assume the 
relation h(f) where (f) is the uncertainty in the measured frequency. Besides, in statistics, uncertainty and error (the 
standard error of the mean in particular) are not the same, even if ordinary error may coincidentally be equal to 
uncertainty. Following the formalism given as [9]: 

                  (p) = p2½ ≥ (p)                 (9) 

where … is the post measurement mean value [9] and the counterpart,  

                                                                 (q) = q2½ ≥ (q),             (10) 

One can also imagine an electron that is in motion within the bounds of the atom under the influence of the nucleus, 
with several positions whose distance from the nucleus may vary but not enough to escape the nuclear influence. 
Besides, Eqs (9) and (10) give the impression that (p) and (q) are respectively, natural consequences of the 
disturbance represented by (p) and (q). However, a question that needs to be answered is whether the mean can ever 
be equal to uncertainty, let alone be greater. It may be necessary to focus on the consequences. This scenario is relevant 
to an electron that has been perturbed.  
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2.2. Background derivations 

Taken as an atom, a round three-dimensional space gives an area of a sphere given as 4a2 (where ‘a’ is the average 
ionization potential-dependent radius of any atom other than hydrogen). Whatever distance between the electron and 
the nucleus in the course of an experimental measurement of its ionization potential, one can consider different values 
of "a," including the Bohr’s radius (a0 exclusively reserved for hydrogen), such that: 

     
(𝑎2)


𝑚𝑒 =

4𝑎4
½


𝑚𝑒 ≥

4


𝑚𝑒(𝑎2)              (11) 

where  may be taken as the duration of measurement.  

Equation (11) or its second aspect, the In-Eq. (11) (note that In-Eq. stands for inequality or not equal) can be related to 
the Planck’s constant (reduced Planck’s constant) just as the energy of a randomly moving molecule of a gas can be 
related to the same constant as follows: 𝑑𝐵 = ℎ 𝑚𝑔𝑣𝑔⁄  where dB, mg, vg and  are the de Broglie wave length, average 

molecular mass of any gas, speed, and randomness factor, an integer that is ≫ 1[15]. A dimensionless quantity cannot 
be appropriately compared with a dimensional quantity, contrary to the suggestion that where HUP failed (became 
violated or flawed), Ozawa was successful or valid as guided by Eq. (8). The error aspect of Eq. (11) is then, 
 

               
(𝑎2)


𝑚𝑒 =

4𝑎4
½


𝑚𝑒 ≥

4


𝑚𝑒(𝑎2) →𝑎⁄            (12) 

 
In Eq. (12), →a is the error coefficient (it may either be < or > 1; a ratio of any reference value if known or the mean to 
the observed as applicable to the radius) whose magnitude would depend on ai. Its relevance can be appreciated in Eq. 
(13) below, which points to the fact that error and uncertainty are not the same. Other variants of Eq. (11) can be derived 
as follows: Bearing in mind the original Heisenberg inequality (HIE), it would appear that: 
 

     
4


𝑚𝑒(𝑎2) = →𝑎ℏ/2                             (13) 

 

                 
4


𝑚𝑒(𝑎2) = ℏ/2                                             (14) 

 
Meanwhile, as in a preprint [16], ai is related to wavenumber according to the following equations: 
 
                  ∇ = 𝑛𝑎0(2𝐸H

3𝑚𝑒)½ ℎ2𝑅∞𝑐⁄ 𝑎𝑖,                           (15) 
 
                  ∇ = 𝑛 2 𝑎𝑖⁄ ,                             (16) 
 
Therefore, error and uncertainty dovetail into error and uncertainty in the wavenumber, which is equivalent to error 
and uncertainty in momentum. Hence, one can rewrite Eqs (13) and (14) as follows: 
 

               
𝑛2

 
𝑚𝑒(∇−2) = ℏ                    (17) 

 

               
𝑛2

 
𝑚𝑒(∇−2) = ℏ                      (18) 

 
 Recall the equation of a wavenumber given as 1/e= meve/h (/e and ve are the de Broglie wave length of the 
electron and the speed of the electron, respectively; for the sake of simplicity, 1/e= p/h)); substituting p/h into Eqs 
(17) and (18) gives, after rearrangement, the equation of error and uncertainty in the reciprocal of the momentum or 
the speed given that the rest mass or, if preferred, the reduced mass of the electron is constant.  
 
            (𝑝−2) = →𝑝  2𝑛2⁄ 𝑚𝑒ℎ,                            (19) 

 
In terms of speed, Eq. (19) becomes: 
 
            (𝑣𝑒

−2) = →𝑣𝑒
 𝑚𝑒 2𝑛2⁄ ℎ,                            (20) 

 
                          (𝑝−2)  =  2𝑛2⁄ 𝑚𝑒ℎ,                                            (21) 
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           (𝑣𝑒
−2)  =  𝑚𝑒 2𝑛2⁄ ℎ,                            (22)  

 
In the absence of a reference, the error may be taken as the difference between the measured momentum or speed and 
the corresponding arithmetic mean. The standard deviation needs input from all the errors for its determination. 
However, the question that can be answered is: "What is the possibility that the inverse of Eqs (19) to (22) leads to?" 
 
              (𝑝2) = 2𝑛2𝑚𝑒ℎ →𝑝⁄ ,                            (23) 

 
where →𝑝 is the error coefficient applicable to p and, 

 
               (𝑣𝑒

2) = 2𝑛2ℎ →v𝑒
⁄  𝑚𝑒,                            (24) 

 
where →v𝑒

 is the error coefficient applicable to ve. 

 
               (𝑝2) = 2𝑛2𝑚𝑒ℎ ⁄ ,                                            (25) 
 
 
               (𝑣𝑒

2) = 2𝑛2ℎ ⁄  𝑚𝑒,                            (26) 
 
 In statistics, population is very important, according to which either one adopts parametric or nonparametric 
methods for the determination of standard deviation. Adopting the parametric method as a preferred option demands 
that the number of determinations be > 6; representing the number of determinations as,  one can take the root of the 
mean of the errors and uncertainties in the squared variables as follows: 
 

            (
∑ (𝑝2)

1


)

½

= (
2 𝑛2𝑚𝑒ℎ

 
)

½

→𝑝
−½ ,                                          (27a) 

 

                (
∑ (𝑝2)

1

2 
)

½

= (
 𝑛2𝑚𝑒ℎ

 
)

½

→𝑝
−½  ,                             (27b) 

 

                (
∑ (𝑝2)

1

2 
)

½

→𝑝
+½ = ((𝑝2))

½
= (

 𝑛2𝑚𝑒ℎ

 
)

½

,                                            (28)  

 
The same procedure applies to ve, which is set aside in preference to p for now. Meanwhile, a similar procedure should 
be applied to Eqs (13) and (14) to obtain the following: 
 

            (
∑ (𝑎2)

1

 
)

½

= (
→a ℎ 

4 2𝑚𝑒
)

½

,                             (29)  

 

        (
∑ (𝑎2)

1

 
)

½

(→a)− ½ = ((𝑎2))
½

= (
  ℎ 

4 2𝑚𝑒
)

½

,                             (30) 

  
Now, one can invoke “Heisenberg energy principle” (HEP) and HUP in order to derive the following equations: Beginning 
with Eqs (28) and (30), one gets: 
 

              (
∑ (𝑝2)

1

2
)

½

→𝑝
+½ (

∑ (𝑎2)

1

 
)

½

(→a)− ½  = ((𝑝2))
½

((𝑎2))
½

= (
 𝑛2𝑚𝑒ℎ

 
)

½

(
  ℎ 

4 2𝑚𝑒
)

½

,                           (31)  

 
 The position in this research is to remain closely as a student (rather than high-ranking science scholars imbued 
with "intimidating" postdoctoral mathematics) of Heisenberg and Bohr, on account of which one bears in mind the 
rather general expression, xp≥ℏ/2, and Eqs (15) and (16), whose combination as in the literature can give a variant 
of the equation of the Rydberg constant, and in this research the equation of Planck’s constant in which Bohr’s radius 
plays a key role. Therefore, Eq. (31) can be rewritten in simpler forms to give:  
 

           →P
½ [((𝑝2))

½
 ((𝑎2))

½
] (8  →𝑎)½⁄  = 𝑛ℏ 2⁄ ,                                      (34) 

   

           ((𝑝2))
½

((𝑎2))
½

 = 𝑛ℏ 2⁄ ,                                 (35a)  
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Two clear statements, that the experimentally generated data clearly demonstrate that, Ozawa’s relation is always valid, 
whereas Heisenberg’s relation is false for all measurement strengths and the confirmation that the ‘‘three-state-
method’’ successfully determines the error and the disturbance of the photonic measuring apparatus [9] seem to lend 
credence to Hill’s view [3]; such view is that the HUP is wrongly interpreted as: the uncertainty in the measured 
momentum times the uncertainty in the measured position must be no less than ℏ as given by xp≥ ℏ/2; yet the same 
author seems to agree that the HUP gives a lower limit to the product of the uncertainty in the momentum and the 
uncertainty in the position—not the product of the momentum and the position; the HUP is the mathematical expression 
for the statistical error in the variables of the wavefunction such as those assigned to the position and momentum of 
the electron. This seems to go with the issue of error in measurement in Baek et al.'s work [9], but the inequality has no 
place for Planck’s constant in the enabling mathematical expression. 

Similar to the experimental study [8] containing few mathematical equations rich in set theory and an all-out 
mathematical exposition of different kinds, including much about set theories, is the works of Busch [6] and Yang et al. 
[2], which seem to give credence to Mill’s [3] claims that despite its successes, after decades of futility, quantum 
mechanics and the intrinsic HUP have not yielded a unified theory, are still purely mathematical, and have yet to be 
shown to be based in reality. It is not all about the experimentalist, Ozawa, but similar experimentally based opinions 
have been held for years. The "contractive states," the product of the free evolution of a subclass of photon coherent 
states, caused a narrowing of the position uncertainty in breach of the standard quantum limit [17]. The conventional 
bounds to the precision of measurements, such as the shot noise limit or the standard quantum limit, are regarded as 
not being as fundamental as the Heisenberg limit, and as such, they can be beaten using quantum strategies that explore 
"quantum tricks" such as squeezing and entanglement [18]. The perspectives of high-ranking specialists are not clearly 
understood by others. Exploring a precision position measuring apparatus has put into question the HUP, or better yet, 
violated the HUP [19]. 

3. Materials and Methods 

The research is theoretical and computational. However, the key data for evaluating the derived equations where 
appropriate were experimental data found in common standard text books and on the internet encyclopedia. 

4. Results and discussion 

This section begins with the understanding that error and uncertainty are not the same, such that this and any other 
views in the literature demand reinterpretations. Currently, there is the issue of the violation of HUP; this would have 
been unnecessary if a rigid adherence to the undefined upper limit and the possibility of equality of the product of 
uncertainties (PUCs) and half of the reduced Planck’s constant were not the case. In a situation where (p) = [ℏ/2]/(q), 
(p) = Pℏ/2(q) and 4me [(a2)]½/ = [→aℏ/2]/[2)]½, as implied in Eqs (9), (10) and (11) respectively, the 
uncertainties must be between ≪ exp. (−17) and ≫ exp. (−17) and this includes the relation, 4me [(a2)]½/ = 
[ℏ/2]/[(p2)]½ where in particular a falls within the sphere of influence of the nucleus and  must be ≪ 1. Where 4me 

[(a2)]½/  [ℏ/2]/[(p2)]½ the uncertainties must be very high where in particular a →  even if p is low.  Leveraging 
on these pieces of information, one can consider three classes of perturbation (disturbance), viz., lower energy level 
oriented perturbation (LOP), partial ionization (higher energy level) oriented perturbation (HOP), and total ionization 
oriented perturbation (TOP); the role of energy level has become evident in that if an electron remains in an unspecified 
point in space at a particular energy level, the equality in Eqs (34) and (35a) stands if (p) and (q) are respectively, ≪ 
exp. (−17) and ≫ exp. (−17) and vice versa. 
 
If, on the other hand, the errors are infinitesimal, the PUCs should be ≪ ℏ /2. With electron capture, there is no question 
of where the electron is; there cannot be measurement error, unlike when the location of an electron is at an infinite 
distance from the nucleus. The momentum cannot be equal to zero, though it may be low. However, as long as a 3-
dimensional space is available for an electron at any energy level, while it may not escape the attraction of the nucleus, 
it cannot be assumed to be a planner in its region of motion. Thus, the product of the uncertainties may also be ≪ ℏ/2. 
Therefore, there are two possibilities. Equation (35b) illustrates this issue, and it may be very illustrative of what 
happens in metals, specifically the transition elements in which the valence shell electrons are relatively free. PUCs of 
position from nucleus and momentum could be very high and greater than ℏ/2; PUCs may tend to ℏ /2 if not ≈ ℏ /2.  

     ((𝑝2))
½

((𝑎2))
½

   𝑛ℏ 2⁄ ,                           (35b)  
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 If, for whatever reason, an electron ascends to a higher energy level while losing momentum, the xp is very 
likely to be > ℏ/2. Not just for the fancy of it, Eq. (35a) or (35b) can be rewritten as: 

     ((𝑝2))
½

((𝑎2))
½

(𝑛 + 𝑖)⁄ >  ℏ 2⁄ ,                    (36) 

 
 
where i is any integer such that n+i is > 0 and ≥1 depending on the value of n. At a lower energy level, momentum is 
high, so any measurement in that regard may likely yield a small uncertainty, instrumental error notwithstanding. If the 
electron moves to a lower energy level, xp may be < ℏ/2; there is a gain in momentum because the distance from the 
nucleus has decreased. Then the inequality takes the form: 

     ((𝑝2))
½

((𝑎2))
½

(𝑛 − 𝑖)⁄ <  ℏ 2⁄ ,                    (37) 

 
Again, i is such that (n−i) is < nn (the highest energy level for the atom in its ground state). Note that if all measurements 
are error-free, the product of zero and either of the two measurements gives zero, which is < ℏ/2. So far, energy has 
been introduced into HUP theory, but what needs to be understood is that a qualitative analysis of the necessary 
equations and inequalities has been carried out. Besides, ℏ/2 is the middle (or better still, the median) limit of 
uncertainties, as opposed to being the lower limit referred to in the literature [3]. This is clarified by the following 
derivations: 
 It is not all about violation; concern for principle should prevail. There is no doubt that there is a theoretical 
and even a practical limit, such as that defined when ionization takes place: where does one locate an electron that has 
been expelled from nuclear influence? When an electron is expelled, the energy level is undefined (infinite), and it is 
designated as n; thus, 

              ((𝑝2))
½

((𝑎2))
½

𝑛⁄ > 0 >  ℏ 2⁄ ,                         (38) 

 
Note that as n → , the speed of the electron outside the nuclear influence does not → ; it may tend to zero outside any 
electrostatic influence. So far in this analysis and discussion, the value of the initial n has not been indicated. Here, one 
can state preemptively that n belongs to hydrogenic atoms and ions. The ground for this assertion is as follows: 
Meanwhile, from Eqs (15) and (16), as in a preprint [16], the Planck’s constant is given as: 
  

             ℎ = (8𝑚𝑒𝐸H
3)¼ (

𝑎0

𝑅∞𝑐
)

½

,                                   (39) 

 
Then, the reduced Planck’s constant is given as:  

      ℏ =  (𝑚𝑒𝐸H
3 2⁄ )¼ (

𝑎0

𝑅∞𝑐
)

½

,                 (40) 

 
It is instructive to state that, based on Bohr’s equation for the average ionization energy of hydrogen, h, is also given 
as: ℎ = (𝑒2 0⁄ )(𝑚𝑒 8⁄ 𝐸H)½. The difference is, of course, the absence of R in the latter. The interest in Eq. (40) lies in 
showing that Bohr’s principle expressed in the average ionization energy of hydrogen and Bohr’s radius and partly with 
the Rydberg constant, R, has a relationship with HUP as follows: 
 

                ((𝑝2))
½

((𝑎2))
½

  𝑛(𝑚𝑒𝐸H
3 2⁄ )¼ (

𝑎0

𝑅∞𝑐
)

½

2⁄ ,                 (41) 

 
 Based on the Planck constant-free equation [4], for the determination of the radius of any atom, Eq. (41) can be 
written as follows: First, the Bohr’s radius is given as: a0 = e2/8 EH  0 which has always been because Zeff is = 1 (this is 
unlike multi-electron atoms). Then substitute into Eq. (41) to obtain the following, after rearrangement: 
 

          (𝑛3)½ 𝑒

2
(

1

0𝑅∞𝑐
)

½

(
𝐸H𝑚e

128
)

¼

,                       (42) 

 
Note that the right-hand side of In-Eq. (42) is = (n3)½ ℏ/2. However, the value of n is one because Eq. (42) is primarily 
for hydrogenic ions or atoms. The version for a multi-electron or multi-proton hydrogenic atom, where n is  1, is 
derived as follows: For the later, the equation is: ai = e2n/8 (Ei EH)½ 0; a generalization of Eq. (41) means that the radii 
of multi-electron atoms and ions are relevant such that:  
                                                                  

                ((𝑃2))
½

((𝑎2))
½

  (𝑛3)½ 𝑒

2
(

1

0𝑅∞𝑐
)

½

(
𝐸H

2 𝑚e

128𝐸i
)

¼

,                  (43) 
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Although Eq. (43) specifies multielectron atoms, it is nevertheless a general one as long as n is equal to one (and Ei is 
equal to EH for hydrogen) for hydrogenic atoms and ions. The point is clear considering one-proton hydrogenic atoms, 
multiproton hydrogenic ions, and multielectron atoms. It can be clearer if one rearranges Eq. (43) in a way that shows 
that different atoms should possess different multiples of half of reduced Planck’s constant, as 
follows:                                                                                        

                              (
𝑛6

𝐸i
)

¼
𝑒

2
(

1

0𝑅∞𝑐
)

½

(
𝐸H

2 𝑚e

128
)

¼

,                   (44) 

 
All parameters in Eq. (44) are fundamental constant except n and Ei. 
 
 As shown in Table 1, one-proton hydrogenic atoms, a single energy level multielectron atom such as helium, 
and all multiproton hydrogenic ions show values that are < ℏ/2: This means that the uncertainties are likely to be very 
low. Precision in measurement is one aspect most likely where the electron (s) is strongly under the influence of the 
nucleus. Far away from the nucleus, precision measurement could be very difficult, if not impossible. Table 1 shows 
quantitative evidence with large mass-number atoms. Besides, the enabling (in) equalities are given as: 
 

        
𝑛→ 

2 𝑒

2
(

𝐸H

0𝑅∞ 𝑐 𝑛𝑖
)

½

(
𝑚e

128𝐸i
)

¼

,                 (45) 

 
where n→, ni and Ei are energy level towards infinity, initial nth energy level and associated ionization energy for this 
purpose. The model concerns positions less than infinity within the sphere of highly attenuated influence of the nucleus, 
as in metals with free valence orbital electrons; distances much longer than the nucleus-valence shell distance are also 
envisaged where the attractive kinetic energy is very low. To preclude any doubt (not for the sake of unimpressive 
numbers), other (in) equalities are: 
 

        
𝑛→ 

2 𝑒

2
(

𝐸H

0𝑅∞ 𝑐 𝑛𝑖
)

½

(
𝑚e

128𝐸i
)

¼

,                  (46) 

 

       ≈
𝑛→ 

2 𝑒

2
(

𝐸H

0𝑅∞ 𝑐 𝑛𝑖
)

½

(
𝑚e

128𝐸i
)

¼

,                   (47) 

 
Reviewing Table 1, one sees clearly that different elements differ in the magnitude of the minimum product of 
uncertainties because of their differences in ionization energies, including those of the same period. The values range 
between ≈ 0.9 and 4 times half of the reduced Planck’s constant with the 1st ionization energy; they are between ≈ 0.7 
and 3 times half of the reduced Planck’s constant with the 2nd ionization energy for some elements, H and He through F. 
Between 7th and 8th pqn, the minimum product of uncertainties is between 42 and 57 times half of the reduced Planck’s 
constant. Among the period III elements, the minimum product of uncertainties ranges between ≈ 3 and 7 times half the 
reduced Planck’s constant with the 1st ionization energy, while it is between ≈ 2 and 5 with the 2nd ionization energy 
(Ne through Ar). Between 8th and 9th pqn, it is ≈ between 40 and 57 times half the reduced Planck’s constant. All the 
values of the minimum product of uncertainties for the heavier elements (e.g., I, Ba, Mo, etc.) were correspondingly > 
the values for their lighter-weight counterparts. All the values for positions where the Zth ionization is the case were 
less than the minimum product of uncertainties (0.527 exp. (−34) J s), which is strictly for hydrogen, excluding any other 
hydrogenic ion because of the higher atomic number, Z. 
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Table 1 Fractions and multiples of half of the reduced Planck’s constant (the minimum product of uncertainties) at 
different ionization energies 

Period II atoms H He Li Be B C N O F 

1st   ℏ /2 
(Js)/exp.(−34) 

0.527 0.455 1.879 1.638 1.687 1.563 1.466 1.490 1.401 

2nd  ℏ/2 
(Js)/exp.(−34) 

- 0.373 0.343 1.386 1.278 1.227 1.176 1.177 1.131 

(n+6)th  ℏ/2 
(Js)/exp.(−34) 

25.825 22.272 30.060 26.210 26.991 25.040 23.455 23.842 22.418 

Zth  ℏ/2 
(Js)/exp.(−34) 

- 0.373 0.3043 0.264 0.236 0.215 0.199 0.186 0.176 

Period III atoms Ne Na Mg Al Si P S Cl Ar 

1st  ℏ/2 
(Js)/exp.(−34) 

1.328 3.493 3.163 3.364 3.112 2.889 2.931 2.770 2.640 

2nd  ℏ/2 
(Js)/exp.(−34) 

1.131 1.092 2.671 2.525 2.624 2.498 2.391 2.381 2.294 

(n+6)th  ℏ/2 
(Js)/exp.(−34) 

21.253 31.436 28.461 30.267 28.007 25.997 26.379 24.923 23.757 

Zth  ℏ/2 
(Js)/exp.(−34) 

0.167 0.159 0.152 0.146 0.141 0.136 0.132 0.128 0.124 

Heavy atoms - - Ba I Mo Rb Br Fe Cu 

1st  ℏ/2 
(Js)/exp.(−34) 

- - 9.849 6.296 6.925 7.915 4.365 4.830 4.857 

2nd  ℏ/2 
(Js)/exp.(−34) 

- - 8.364 5.411 4.040 3.536 3.756 4.037 2.478 

 “” can either be > or < one as the case may be and differs for different elements due to differences in ionization energies, and principal quantum 
numbers; it must also be positive. 

The possibility of fractional energy levels seemed to have been recognized [20]. To this end, the following equation, 
derived as follows, can enable its determination given any reduced Bohr’s radius. The equations in the literature [4] and 
the Coulomb equation are used for the derivation. 

               𝐸i(++) =
𝑛𝑓

2ℎ2

82𝑎𝑟
2𝑚𝑒

=
𝑒2

80𝑎𝑟
,              (48) 

where ar, nf, and Ei(++) are the reduced Bohr’s radius (which may be reduced by two or more folds), the fractional energy 
level, and high energy closer to the nucleus. The equation of nf is: 

                                        𝑛f = (
𝑚𝑒𝑎r

0
)

½

𝑒 ℎ⁄ ,              (49) 

With values of nf and substitution into any of the preceding relevant equations, the values of (n3)½ ℏ/2 can be calculated; 
they could be less than, greater than, or approximately equal to PUCs. The calculated values of (n3)½ ℏ/2 only tell one 
that the PUCs may be lower, higher, or approximately equal to ℏ/2. Table 2 illustrates this issue using a hypothetical 
approach using hydrogen. Regardless of the written form in the literature, the relationships are as follows: 

(〈𝑄2〉 − 〈𝑄〉2)½(〈𝑃2〉 − 〈𝑃〉2)½  and [(∑ 𝑄𝑖
2 − (∑ 𝑄)2 𝑛𝑠𝑡⁄ )½ 𝑛𝑠𝑡⁄ ][(∑ 𝑄𝑖

2 − (∑ 𝑄)2 𝑛𝑠𝑡⁄ )½ 𝑛𝑠𝑡⁄ ]  give the same value of 
PUC (5.9395 exp. (− 40) J s) which is ≪ ℏ/2. The values, Bohr’s radii, and average ionization energies used for 
illustrations are displayed in Table 2. Furthermore, Table 2 illustrates clearly the assertion that the closer an electron 
is to the nucleus, the lower the uncertainties in position and momentum. It is between 0.0264 and 0.0053 PUCs, 
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corresponding to between a0/20 and a0/100 for H; 0.0114 and 0.00227 for He; 0.0443 and 0.00886 for Li; and 0.02895 
and 0.00579 for Be. 

Table 2 Factional energy levels and the fractions of half of reduced Planck’s constants 

H H ar (exp.(−11) m) H He Li Be 

EH 

(kJ/mol). 

a0 (exp.(−11) m a0/20 nf=0.2236 nf =0.1581 nf =0.2582 nf =0.2236 

1313 5.2885 =0.0264 =0.0114 =0.0443 =0.02895 

1314 5.28454 a0/40 nf =0.1581 nf =0.112 nf =0.1826 nf =0.1581 

1317 5.27251 =0.0132 =0.0083 =0.0221 =0.0145 

1312 5.29261 a0/60 nf =0.1291 nf =0.0913 nf =0.1491 nf =0.1291 

1318 5.26851  =0.0088 =0.0038 =0.0148 =0.0097 

1304 5.32508 a0/80 nf =0.112 nf =0.0792 nf =0.1291 nf =0.1118 

1309 5.30474  =0.0064 =0.0029 =0.0111 =0.00724 

1308 5.30879 a0/100 nf =0.0999 nf =0.0701 nf =0.1155 nf =0.09996 

- -  =0.0053 =0.00227 =0.00886 =0.00579 

, nf, and ar are the positive fraction (<1), fractional energy level (quantum number), and reduced Bohr’s radius: NB: Hypothetical values were used 
for illustrations. ℏ/2=0.5270469322 exp. (−34) J s which is exclusively for hydrogen. The values of the fractions of half of the reduced Planck’s 

constant are given as:  ℏ /2. 

The concept of relative uncertainty (the ratio of  ℏ /2/ ℏ /2=) introduced in this research is intended to mean the 
probability (or probability density, 2) of locating the position and momentum without resorting to the popular 
Schrödinger wave function and associated mathematical formalism. As Table 3 shows, the 2 values could be as high as 
between ≈ 20 and 99 for H; ≈ 46 and 232 for He; ≈ 12 and 59 for Li; and ≈18 and 91 for Be. These values have implications 
for the physical and chemical properties of elements that make them amenable to one form of application or another. 

Table 3 Relative uncertainty illustration using some elements at an arbitrarily chosen reduced Bohr’s radius for 
hydrogenic atoms 

ar (exp.(−11) m) H He Li  Be 

a0/20  nf =0.2236  nf =0.1581  nf =0.2582  nf =0.2236 

 2=19.964  2=46.232  2=11.897  2=18.205 

a0/40 nf =0.1581  nf =0.112  nf =0.1826  nf =0.1581 

 2=39.928  2=63.500  2=23.848  2=36.348 

a0/60  nf =0.1291  nf =0.0913  nf =0.1491  nf =0.1291 

 2=59.892  2=138.697  2=35.611  2=0.54.335 

a0/80  nf =0.112  nf =0.0792  nf =0.1291  nf =0.1118 

 2=82.417  2=181.740  2=47.482  2=72.797 

a0/100  nf =0.0999  nf =0.0701  nf =0.1155  nf =0.09996 

 2=99.443  2=232.179  2=59.497  2=91.027 

2 is the relative uncertainty, otherwise christened "probability," of locating the position of an electron relative to the nucleus and its momentum, 
precluding the wave notion for the purpose of this research and for descriptive convenience. 

There is a need to add that, the expansion of metals in hot weather is a result of the expansion of the 3-dimensional 
space available to them in the metallic lattice. The opposite is true upon exposure to cold weather. The free electrons 
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become very mobile in hot weather, such that the uncertainties of the free electrons become very high. Indigestible food 
substances, like resistance starch, could find an explanation in the fact that where the molecular orbital electron cannot 
assume higher PUCs, the crystal structure may defy liquefaction; the electrons may be closer to the nucleus. 

 

Figure 1 Variation of the minimum product of uncertainties (MPUCs,  ℏ/2) versus the square of the effective nuclear 
charge. The different values of MPUCs were calculated for each element, from hydrogen to neon, at a given principal 

quantum number, pqn; EFF’ and NUC’ denote effective and nuclear, respectively. The effective nuclear charge is 
determined as described in the literature [21] 

 

 

Figure 2 The variation of relative uncertainty otherwise christened probability with square of the effective nuclear 
charge (EFF’ NUC’ Charge). Prob. and RU stand for probability and relative uncertainty respectively both of which are 

symbolized as: (2) 

With different elements, the minimum product of uncertainties (MPUCs i.e.  ℏ/2) shows trend consistent with the 
variation in different ionization energies within the same period (Figure 1). The fall of the curve indicates a decrease in 
 ℏ/2 while a rise indicates higher  ℏ/2 values in line with lower ionization energy. It cannot be overemphasized to 
opine that any atom whose outermost shell electron has a high MPUCs, or ℏ/2, must also display a low probability 
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(2) of being located with its momentum precisely; the tendency to a precise position and momentum measurement is 
enhanced given a very low  ℏ/2, with a concomitant high value of 2. This is illustrated in Figure 2. The sharp rises in 
2 correspond to low values of  ℏ/2   

Values > ℏ/2 are shown by multielectron higher energy level atoms for clear reasons. It is obvious that larger atoms 
present higher uncertainty with respect to the outermost orbital or valence electron (s) due to the fact that the nuclear 
attraction for the electrons is weaker than for the inner electrons, which have much less freedom of motion. If n and Ei, 
respectively, are 1 and EH (average ionization energy of hydrogen), Eq. (44) reproduces half of reduced Planck’s 
constant. The fact that values >ℏ /2 exist for some atoms means that the uncertainties for position and momentum for 
such atoms are very high. 

Schrödinger quantum mechanics (SQM) or the Schrödinger equation (SE) has been described as one that successfully 
explains the hydrogen atomic orbital and residence of a single electron but fails where a multi-electron atom is the case. 
One may wish to comment that reference to atoms is closer to physical reality than recent experimental work [9], whose 
special method does not give any impression that either hydrogenic atoms or nonhydrogenic atoms or both can be 
referred to. This is unlike this study, in which, in addition, SE is inconsequential. 

In his 1927 paper entitled (in Germany), Über den anschaulichen Inhalt der quantentheoretischen kinematic und 
Mecanik [7], the translation being the physical content of quantum kinematics and mechanics, names such as Bohr and 
Planck were stated; if one is not mistaken, Schrödinger was stated as to imply that quantum (or wave) mechanics and 
associated SE were mentioned text-wise. But SE is known to fail where multi-electron atoms are of interest. There is no 
ambiguity in the original Heisenberg equation, though the stereotypical limits on the upper and lower values of the 
product of two uncertainties have been refuted [9, 22]. Be that as it may, the research has come to the realization that 
these limits are not necessary if the energy levels of real atoms of elements as well as the kinetic energy of any electron 
at any energy level are considered.  

The application of knowledge can drive the desire for the acquisition of more knowledge. The transfer of electrons in 
respiration and photosynthesis, digestion of resistant starch, expansion of metals, and the reactivity of the pi covalent 
bond electrons may have interpretations based on HUP. In this study, flexible limits are conditionally recognized in that 
the electron in an atom in its ground state presents a different physical characteristic from the same atom in an excited 
state. Hence, in stating the different inequalities, one takes into account possibilities such as an electron descending to 
a lower energy level, an electron transiently taking up positions between energy levels, and an electron undergoing 
partial expulsion, total expulsion, or ionization. This justifies Eqs (35a) to Eq. (38) with an increasing supporting view 
based on the experimental finding of Mills [20].  

5. Conclusion 

The equations for the determination of both fractions and multiples of ℏ/2 were derived. The fit was accomplished by 
relating Planck's constant to atomic properties. Such properties are average ionization energies and principal quantum 
numbers. The research shows that ℏ/2 is strictly for hydrogen. Higher multiples of ℏ/2 show that the uncertainties 
(position (a) and momentum (p)) could be very high, and vice versa. Fractions of and multiples of ℏ/2 have applications 
in the elucidation of the chemical and physical properties of matter as well as in biological processes.  
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