

Vulnerability to viral outbreaks: A study of potential future pandemics

S. Nikhileswar Reddy ¹, Abhinav Raut ², Shaikh Mohsina ² and Lakshmi Jyothi T ^{2,*}

¹ Department of Microbiology, All India Institute of Medical Sciences, Bibinagar.

² Medical college VRDL, Dept of Microbiology, All India Institute of Medical Sciences, Bibinagar

World Journal of Advanced Research and Reviews, 2025, 27(01), 498-511

Publication history: Received on 21 April 2025; revised on 30 May 2025; accepted on 02 June 2025

Article DOI: <https://doi.org/10.30574/wjarr.2025.27.1.2131>

Abstract

Emerging infectious diseases (EIDs), particularly viral outbreaks, pose an escalating threat to global public health due to their capacity to cause widespread morbidity, mortality, and economic disruption. Zoonotic viruses, which spill over from animals to humans, account for the majority of these threats and are increasingly driven by factors such as climate change, deforestation, urbanization, and global travel. Historical pandemics, including the 1918 influenza, SARS, and COVID-19, highlight the unpredictable nature and devastating impact of such viruses. India, with its vast population, ecological diversity, and overstressed public health infrastructure, remains highly vulnerable to viral epidemics such as Dengue, Zika, and Nipah. Rapid urbanization, poor rural healthcare access, and weak surveillance systems further exacerbate the nation's risk profile. This review explores the historical and ecological dynamics of viral emergence and re-emergence, with a focus on zoonotic spillovers as key drivers. It examines India's specific healthcare vulnerabilities, the amplifying roles of globalization and urban growth, and the need for predictive tools to identify future viral threats. Emphasis is placed on the importance of integrated surveillance, early detection, and coordinated response strategies. The review also highlights the critical role of vaccines, antiviral development, and a "One Health" approach that unites human, animal, and environmental health systems. Drawing on both global and Indian experiences, this article outlines actionable steps to strengthen preparedness and mitigate the risk of future pandemics.

Keywords: Viral outbreaks; Climate change; Remerging viruses; Zoonotic spillover; Animal human interaction

1. Introduction

Given that emerging infectious diseases (EIDs) have the potential to cause widespread morbidity, mortality, and major economic disruption, viral outbreaks continue to pose serious threats to global public health. The possibility that new viral risks could appear at any time has received a lot of attention due to the growing number of zoonotic spillover occurrences, in which infections spread from animals to people. Since zoonotic viruses are the cause of many of the most catastrophic outbreaks in history, they continue to be a major worry (Khan and Luby, 2018). This emphasises how critical it is to comprehend viral dynamics, particularly as ecosystems continue to be altered by climate change and human activity, and as interactions between humans and animals rise.

It is commonly known that viral epidemics are on the rise worldwide. According to Jones et al. (2008), environmental, social, and technological variables like urbanisation, globalisation, and growing human encroachment into formerly uninhabited ecosystems are some of the reasons contributing to the rise in emerging illnesses. The world is extremely vulnerable to pandemics in the future due to these causes as well as the quick transmission of diseases through international travel and trade. According to Heymann and Shindo (2020), the COVID-19 pandemic made this glaringly obvious and brought attention to the weaknesses in international pandemic planning and response strategies.

* Corresponding author: Lakshmi Jyothi T

The situation is made worse, especially in India, by the country's enormous population, varied ecosystems, and mounting strain on the public health system. India's susceptibility to viral epidemics is poignantly reminded by diseases like Dengue and Zika, as well as more localised outbreaks like the Nipah virus (Kaliappan et al., 2022). Although India has made great progress in public health, Chawla et al. (2020) and Patel and Ghosh (2017) stress that the nation is a hotspot for new viral infections due to its high rate of zoonotic disease, rapid urbanisation, and poor rural healthcare infrastructure.

A comprehensive assessment of India's readiness for potential viral threats is required in light of the COVID-19 pandemic, which also revealed a number of weaknesses in the nation's public health response. Reddy and Pandit (2021) and Kumar et al. (2019) draw attention to the difficulties presented by an overburdened healthcare system and offer solutions for enhancing surveillance, early detection, and prompt epidemic response. According to Saxena et al. (2022), continuous efforts to improve surveillance and response systems are crucial for controlling viral outbreaks and are necessary for future readiness.

This review aims to provide a comprehensive analysis of the factors contributing to viral outbreak vulnerabilities, with a specific focus on India. By examining both global and national perspectives on emerging viral diseases and reviewing key strategies for surveillance and preparedness, this article seeks to outline the steps necessary to mitigate the risk of future viral pandemics.

2. Understanding Viral Outbreaks: A Historical Perspective

Human societies have been significantly impacted by viral outbreaks, which have changed political environments, economy, and public health. Knowing the background of viral diseases, from the earliest pandemics to the most current world crises, offers important insights on the trends, origins, and treatment of new infections. Lessons learnt from previous outbreaks can help direct future efforts to prevent and lessen viral dangers. These lessons have influenced contemporary epidemiology, surveillance systems, and response tactics.

Smallpox, which was brought on by the variola virus, was one of the first and most significant viral pandemics. Only via a concerted international vaccination program spearheaded by the World Health Organisation (WHO) in the 20th century was smallpox completely eradicated, having decimated communities around the globe for generations. The fact that smallpox is still the only human illness that has been completely eradicated by vaccination highlights how effective vaccination is at containing viral outbreaks. The eradication of smallpox is still a significant public health achievement, as stated by Khan and Luby (2018), underscoring the significance of consistent work, global cooperation, and efficient immunisation campaigns. [1].

Influenza pandemics emerged as a major worldwide health issue in the 20th century. With an estimated 50 million fatalities and a third of the world's population infected, the 1918 Spanish flu, which was brought on by the H1N1 influenza virus, continues to rank among the deadliest pandemics in history. Travel around the world and urbanisation made it easier for the virus to spread fast across territorial boundaries. Jones et al. (2008) talk about how the 1918 pandemic showed how susceptible people are to extremely contagious viruses and how crucial early diagnosis and coordinated worldwide responses are. [2]. Subsequent influenza pandemics, including the **H1N1** outbreak in 2009, further emphasized the need for constant surveillance, timely vaccine development, and public health preparedness.

Another pivotal period in the history of global health was the onset of the HIV/AIDS epidemic in the 1980s. Because of practices like sharing needles, unprotected sexual contact, and a lack of proper public health infrastructure, HIV—the virus that causes AIDS—spreads quickly, especially in sub-Saharan Africa. In addition to killing millions of people, the pandemic altered our understanding of and approach to treating infectious diseases. Heymann and Shindo (2020) claim that the HIV/AIDS epidemic demonstrated the interdependence of global health concerns, the part social determinants play in the spread of disease, and the significance of specific preventative measures like harm reduction initiatives and safe sex practices in addition to medical interventions. [3]. Despite advances in treatment, HIV remains a global health challenge, underscoring the importance of continued research, education, and care.

More recently, the 2002–2003 SARS outbreak raised awareness of the dangers of coronaviruses. The virus that caused severe acute respiratory syndrome (SARS), SARS-CoV, spread to 29 countries, killing about 800 individuals and infecting over 8,000 more. Although SARS was eliminated in a matter of months, its worldwide impact brought attention to the risks associated with travelling abroad and the possibility of other infections emerging. In their discussion of how the SARS outbreak preceded the subsequent COVID-19 pandemic, Wilder-Smith and Freedman (2020) highlight the significance of efficient quarantine and containment measures as well as how swiftly a novel virus might spread in a globalised society. [4].

Another noteworthy illustration of how swiftly a viral disease may decimate a population, especially in areas with inadequate healthcare infrastructure, was the Ebola virus outbreak that afflicted West Africa between 2014 and 2016. The high death rate of the hemorrhagic fever virus Ebola and its outbreaks, especially in sub-Saharan Africa, have brought attention to the difficulties of containing viral propagation in environments with limited resources. The Ebola outbreak highlighted the need for enhanced healthcare delivery, strong surveillance, and strengthened public health systems, particularly in nations with limited resources, according to Reddy and Pandit (2021). [5].

The COVID-19 pandemic, which was brought on by the SARS-CoV-2 virus, was arguably the most prominent recent outbreak. COVID-19 began to spread over the world in late 2019 and killed millions of people while overtaxing healthcare systems. Several crucial elements of contemporary viral outbreaks were brought to light by the pandemic, such as the significance of early diagnosis, quick diagnostic testing, and the function of vaccinations in halting the spread of infectious diseases. According to Yusuf and Mahalingam (2021), the rapid creation and widespread distribution of COVID-19 vaccines demonstrated the advancements in vaccine science, but they also highlighted the difficulties in ensuring global vaccination equality and the necessity of coordinated international responses to new pandemics. [6]. COVID-19 also showcased the critical role of public health communication in shaping public behaviour, with misinformation and disinformation contributing to vaccine hesitancy and delays in control measures.

There have been recurring trends in these epidemics throughout history. As evidenced by the examples of HIV, SARS, and COVID-19, globalization—especially air travel—has aided in the quick transmission of viruses across nations and continents. A common theme has been zoonotic transmission, or the spread of viruses from animals to people. For example, SARS, Ebola, and HIV all started in animal populations before spreading to people. New types of viruses that may avoid immunity and propagate more readily have emerged as a result of virus mutations, including those in the influenza virus and SARS-CoV-2.

3. The Dynamics of Viral Emergence and Re-Emergence

Numerous biological, environmental, and societal factors can have an impact on the complicated processes of viral illness onset and reemergence. Predicting future outbreaks and planning efficient public health interventions require an understanding of the dynamics underlying viral emergence and re-emergence. Re-emerging viruses are ones that were previously under control but have resurfaced as a result of mutation, changes in human behaviour, or environmental changes. Emerging viruses are frequently freshly identified or newly adapted to humans.

3.1. Factors Contributing to Viral Emergence

3.1.1. Zoonotic Spillover:

The phenomenon known as zoonotic spillover—the spread of viruses from animals to people—is the main cause of the rise in viral infections. Many of the most deadly new viral illnesses are zoonotic, such as Ebola, SARS-CoV, MERS-CoV, and HIV. This spillover frequently happens when people invade natural habitats, raising the possibility of coming into direct or indirect contact with virus-carrying animals. The likelihood that zoonotic illnesses may spread to human populations rises as human-animal interactions increase, particularly in areas of agriculture, urbanisation, and deforestation. [1].

3.1.2. Globalization and Human Mobility:

Infectious diseases have spread more quickly as a result of the quick cross-border movement of people, products, and animals. Travelling internationally, particularly by air, makes it possible for viruses to swiftly spread across continents, transforming small outbreaks into worldwide pandemics. The most recent illustration of how interconnected the globe has become and how rapidly infectious diseases can spread as a result of human mobility is the COVID-19 pandemic. [3]. This phenomenon also facilitates the spread of new variants of viruses, as seen with the emergence of the Delta and Omicron variants of SARS-CoV-2.

3.1.3. Environmental Changes:

Changes in land use, deforestation, and climate change have all led to ecological modifications that can promote the introduction of viral infections. For example, higher temperatures may cause some mosquito species to wander farther, which could accelerate the spread of diseases like dengue, Zika, and chikungunya that are conveyed by vectors. Changes in rainfall patterns can also have an impact on disease-carrying mosquitoes' hatching grounds and raise the possibility of disease outbreaks. Likewise, habitat fragmentation and loss can increase human-wildlife contact and promote the spread of zoonotic infections.[2].

3.1.4. Genetic Evolution and Mutation:

Because of their high rates of mutation, viruses—especially RNA viruses like influenza and coronaviruses—can swiftly adapt to new hosts or conditions. SARS-CoV-2 and the 2009 H1N1 influenza virus are two examples of how these alterations can occasionally enable viruses to spread from animal species to humans. Rapidly changing viruses can elude immune reactions, giving rise to new strains with increased virulence or transmission. [3].

3.1.5. Changes in Host Behavior:

Viral diseases arise as a result of human activities like hunting and eating wild animals, which raises the danger of zoonotic infections, or unprotected sexual intercourse, as is the situation with HIV. Urbanisation and overcrowding are examples of lifestyle changes that might occasionally provide the perfect environment for the spread of viruses. For instance, crowded urban slums frequently lack proper healthcare and sanitation, which facilitates the spread of infectious diseases. [7].

3.2. Re-Emergence of Viral Diseases

The re-emergence of viral diseases is driven by a combination of factors, including mutations in the virus, lapses in public health measures, and changes in the environment or human behavior that facilitate the resurgence of previously controlled diseases.

3.2.1. Antimicrobial Resistance

Antimicrobial resistance (AMR) can sometimes exacerbate re-emerging viral infections. Treatment of influenza and drug-resistant TB, for instance, has become increasingly challenging due to their comeback. Antiviral medications may be impacted by this phenomena, which is not just confined to bacteria. Antiviral-resistant strains of HIV and influenza are becoming more prevalent, which is concerning because they reduce the effectiveness of current treatments and make control measures more difficult [5].

3.2.2. Lapses in Vaccination and Immunization Programs

Inadequate vaccination campaigns are to blame for the resurgence of illnesses like polio and measles in various regions of the world. Disease outbreaks that were previously under control may occur as a result of decreased vaccination coverage brought on by disinformation, vaccine hesitancy, or political unrest. The return of these illnesses emphasises how crucial it is to keep vaccination rates high in order to stop viral infections from reoccurring [8].

3.2.3. Virus Mutations:

Virus mutations can cause diseases that were previously under control to reappear. This is especially true for coronaviruses and influenza. New viral strains that are more virulent, more transmissible, or both may result from mutations. As observed with COVID-19 variations, these novel strains may circumvent immunity from previous infections or vaccinations, resulting in new waves of infection [4].

3.2.4. Changes in Human Behaviour

Viral illnesses may reappear as a result of social, political, and economic shifts. For instance, during the 2015–2016 outbreak in the Americas, shifts in mosquito control strategies and population migration sped up the spread of the Zika virus. The spread of viral infections that impact both humans and animals, like avian influenza, can also be facilitated by changes in agricultural methods, such as a rise in factory farming [6].

3.2.5. Improper Control and Surveillance

Emerging and re-emerging viral illnesses may not be detected in a timely manner due to deficiencies in public health surveillance and infrastructure. Underdeveloped healthcare systems and nations with inadequate resources may find it difficult to prevent outbreaks, which could allow diseases that could have been confined to spread. Inadequate surveillance and response systems can lead to the comeback of viral illnesses, as demonstrated by the Ebola outbreaks in West Africa and the Nipah virus's return in India [10].

4. Zoonotic Viruses: A Key Threat to Future Pandemics

The public health of the world is seriously threatened by zoonotic viruses, which are viruses that spread from animals to people. Some of the most catastrophic pandemics in human history, such as HIV/AIDS, Ebola, and the ongoing COVID-

19 pandemic, have been brought on by zoonotic illnesses throughout the past century. The probability of zoonotic spillover events, in which viruses spread from animals to humans, has increased as human populations continue to rise and spread into formerly uninhabited areas. Numerous factors, such as increased human-wildlife interaction, deforestation, climate change, and international travel, contribute to the spread of these viruses. Predicting and averting future pandemics requires an understanding of zoonotic viral dynamics.

Some of the most deadly and pervasive epidemics in history have been caused by zoonotic viruses. The spread of the simian immunodeficiency virus (SIV) from monkeys to humans is the cause of HIV/AIDS, one of the oldest and best-known zoonotic illnesses. The global HIV/AIDS pandemic, which has killed approximately 36 million people worldwide since the 1980s, was ultimately caused by this viral spillover, most likely via hunting and eating monkey meat (Heymann & Shindo, 2020). By highlighting the long-term effects of zoonotic disease spillover and the significance of comprehending the virus's animal reservoirs and transmission patterns, HIV/AIDS transformed the field of public health.

Ebola, a highly deadly hemorrhagic fever virus that is mainly spread from bats to humans, is another well-known instance of zoonotic spillover. The Ebola outbreak in West Africa from 2014 to 2016 is a frightening reminder of how lethal zoonotic diseases can be. By consuming bushmeat, the virus most likely spread from fruit bats to people. Reddy and Pandit (2021) claim that even though the 2014 outbreak was limited, it brought attention to the difficulties in controlling zoonotic illnesses in areas with weak public health systems and the necessity of quick identification and intervention techniques [5]. The Ebola outbreak demonstrated that, while these viruses can be deadly, they can often be contained with timely interventions and international cooperation.

Both coronaviruses, SARS-CoV and MERS-CoV, have demonstrated in recent years how zoonotic viruses may move globally and produce extensive outbreaks. Civet cats were identified as an intermediate host for a bat virus that caused the 2002–2003 SARS outbreak, which spread to 29 countries and claimed about 800 lives. Likewise, MERS, which first surfaced in 2012, is thought to have started in bats and spread to people through camels. Predicting and managing zoonotic epidemics is made extremely difficult by coronaviruses' capacity to quickly mutate and adapt to new hosts, as demonstrated by the SARS-CoV-2 virus that caused the COVID-19 pandemic [4].

The SARS-CoV-2-caused COVID-19 epidemic has raised awareness of zoonotic viruses worldwide. The virus most likely spread from bats to humans via an intermediary animal host, such pangolins, after emerging from a Wuhan, China, wet market. With the help of international travel, SARS-CoV-2 spread quickly from person to person, causing millions of infections and fatalities globally. According to Khan and Luby (2018), the COVID-19 pandemic has highlighted the urgent need for zoonotic disease preparedness and surveillance because these viruses have the capacity to quickly adapt and disseminate throughout human populations, potentially resulting in pandemics [1]. The pandemic has also highlighted the importance of early detection, rapid response, and the need for international collaboration in mitigating the effects of such outbreaks.

The continued danger of zoonotic illnesses is further demonstrated by the recent appearance of the Hantavirus and Nipah virus. While the Nipah virus, which starts in fruit bats, can cause encephalitis and serious respiratory sickness, the Hantavirus, which is mainly spread by rodents, can cause severe respiratory distress in people. Although both viruses have caused localised epidemics, there is still fear about their potential to spread globally. Early surveillance and monitoring of animal populations is crucial to averting future pandemics because the chance of coming into contact with novel zoonotic viruses rises as human populations continue to spread into previously unaltered areas.

Because of their intricate dynamics of transmission, the variety of animal hosts they can infect, and the part environmental factors play in promoting spillover events, zoonotic viruses present particular difficulties. Deforestation, climate change, and the fast growth of human populations into wildlife habitats are the main causes of the introduction of zoonotic diseases. Jones et al. (2008) claim that environmental changes such modified ecosystems and more human-wildlife interaction make it easier for viruses to spread from animals to people, raising the possibility of outbreaks in the future [2]. Additionally, globalization and increased human mobility enable these viruses to spread quickly across borders, turning local outbreaks into global health crises.

Future pandemics can be avoided by monitoring human-animal interactions, finding animal reservoirs, and comprehending the ecology of zoonotic viruses. In areas where there is a high density of human-wildlife contact, surveillance methods that target high-risk animal populations will be essential for identifying possible spillover events before they develop into widespread outbreaks. To reduce the chance that zoonotic viruses could trigger pandemics in the future, international collaboration in research, data exchange, and outbreak response is required.

5. Key Vulnerabilities in India's Healthcare System

With a population of more than 1.4 billion, India has a difficult time keeping up a strong healthcare system that can treat both chronic and infectious diseases. Socioeconomic inequality, inadequate infrastructure in rural areas, and a healthcare workforce with insufficient resources all contribute to these difficulties. India is therefore especially susceptible to newly emerging infectious diseases, such as zoonotic viruses, which can spread quickly in a nation with such a diverse and dense population.

The unequal distribution of healthcare resources is one of the main weaknesses in the Indian healthcare system. The majority of people live in rural areas, which frequently lack basic healthcare infrastructure and services, whereas urban centres like Delhi, Mumbai, and Bengaluru have state-of-the-art medical facilities. According to Patel and Ghosh (2017), the rural-urban divide in healthcare access means that individuals in rural areas are more likely to suffer from inadequate medical care, which exacerbates health outcomes during viral outbreaks, particularly for diseases like dengue and influenza [7]. The absence of effective healthcare infrastructure in these regions hampers efforts to control the spread of infections.

Furthermore, India's public health system lacks adequate funding, especially in disadvantaged and rural areas. In smaller towns and villages, the absence of proper healthcare facilities causes infectious disease detection, diagnosis, and treatment to be delayed (Kumar et al., 2019). This problem is particularly troubling during zoonotic outbreaks, when prompt action and early detection are essential to halting extensive spread [9]. The Indian healthcare system also faces a shortage of trained medical professionals, including doctors, nurses, and laboratory technicians, particularly in rural areas, where public health infrastructure is weakest.

Systems for reaction and surveillance are another major weakness. Gaps in disease surveillance frequently make it more difficult for India to identify and contain new virus outbreaks. Inconsistent data collecting and reporting methods limit the ability to monitor and provide early warning for possible zoonotic infections like Hantavirus and Nipah virus. According to Saxena et al. (2022), despite advancements, the nation's surveillance systems continue to struggle to acquire timely and reliable data, which is crucial for containing outbreaks before they get out of hand [11]. Effective surveillance systems are crucial for identifying outbreaks in their early stages, especially with diseases that have the potential for rapid spread like COVID-19.

The issue of vaccine accessibility and distribution further exacerbates vulnerabilities in India's healthcare system. While India has made remarkable strides in vaccine development and distribution, vaccine hesitancy and logistical challenges hinder the widespread adoption of life-saving vaccines. As discussed by Chawla et al. (2020), misinformation, fear, and lack of awareness about the benefits of vaccination have contributed to lower vaccination rates in certain regions of India, which increases the risk of outbreaks of diseases like measles, polio, and tuberculosis [6]. The COVID-19 pandemic underscored this vulnerability, as the country faced difficulties in distributing vaccines to its vast and diverse population in a timely and equitable manner.

India is more susceptible to pandemics in the future due in large part to climate change and environmental deterioration. Particularly in tropical and subtropical areas, the combination of rising temperatures and changing monsoon patterns is fostering the growth of vector-borne illnesses including dengue, malaria, and Zika. According to Jones et al. (2008), environmental changes including rising temperatures and changed rainfall patterns are causing disease vectors to spread geographically, increasing India's vulnerability to emerging and re-emerging viral threats [2].

Finally, socioeconomic differences still make India's healthcare system less effective. A sizeable section of the populace does not have access to health insurance or the money to pay for essential medical care. According to Meena et al. (2021), low-income groups, especially those living in rural regions, have obstacles while trying to obtain healthcare, which exacerbates health outcomes during pandemics [8]. This socioeconomic divide limits the effectiveness of public health interventions and exacerbates the impact of infectious diseases on vulnerable communities.

India's healthcare system faces several key vulnerabilities that hinder its ability to manage emerging viral diseases effectively. Addressing these challenges will require significant investment in healthcare infrastructure, workforce development, surveillance systems, and public health initiatives aimed at reducing inequities in access to care. Strengthening the healthcare system, particularly in rural areas, and improving national preparedness will be crucial in mitigating the impact of future viral outbreaks.

6. Globalization and Urbanization: Amplifiers of Viral Spread

Urbanisation and globalisation have emerged as major forces behind the spread of viral infections, increasing the likelihood of pandemics in previously unanticipated ways. These two interrelated processes have changed the way viruses spread, allowing diseases to infect people much more quickly and easily across boundaries than in the past. Understanding how urbanisation and globalisation increase the movement of people, goods, and animals as well as the overcrowding in urban areas—all of which provide an ideal environment for the quick spread of infectious diseases—is crucial to comprehending how these factors contribute to viral outbreaks.

Globalization, defined as the growing interconnectedness of economies, societies, and cultures through trade, communication, and travel, has significantly impacted the transmission dynamics of viral diseases. The dynamics of viral illness transmission have been profoundly altered by globalisation, which is the increasing connectivity of economies, civilisations, and cultures through trade, communication, and travel. For example, the COVID-19 pandemic showed how swiftly a new virus may travel across continents, with cases appearing in several nations just a few weeks after the original outbreak in Wuhan, China. Heymann and Shindo (2020) point out that because of the frequent migration and air travel, globalisation has made it easier for infectious diseases to spread quickly [3]. The mechanism by which viral illnesses can spread across international borders is accelerated by the interconnection of nations as well as the crowded airports and other transportation hubs.

The H1N1 influenza pandemic of 2009 similarly exemplified the global threat posed by travel. As discussed by Jones et al. (2008), the rapid spread of the H1N1 virus was largely due to the high volume of international air travel, which allowed the virus to reach different regions of the world in a matter of days, despite originating in a single country [2]. The same phenomenon is seen with SARS and MERS, where both coronaviruses spread rapidly to other countries through travellers, demonstrating the ease with which pathogens can be transmitted globally.

Viral spread is now significantly accelerated by urbanisation, the process by which a growing proportion of a population lives in urban areas. Because dense populations provide more opportunities for direct contact and, thus, more opportunities for diseases to spread, overcrowding in urban settings raises the risk of viruses spreading from person to person. In urban slums, where access to healthcare services and sanitation are scarce, this problem is most noticeable. As emphasized by Chawla et al. (2020), urbanization not only creates the ideal conditions for viral transmission but also exacerbates the challenges faced by public health systems in densely populated regions, particularly in the context of controlling outbreaks like dengue, Zika, and influenza [6].

Viral infections also spread more quickly in cities due to increased mobility. For example, dengue fever has spread more widely in urban areas because of higher dengue vector populations. Vector-borne diseases have proliferated due to the quick movement of people inside a metropolis and the international movement of goods. Similar to this, the Zika virus, which is spread by mosquitoes, has quickly expanded throughout cities due to inadequate waste management and a high population density that gives mosquitoes plenty of places to reproduce. According to Jones et al. (2008), urbanisation and climate change have increased the habitat for these mosquitoes, which has led to the wider spread of vector-borne illnesses. [2].

Globalization and urbanization also change how the world responds to viral outbreaks. In the case of **COVID-19**, rapid global transmission outpaced public health systems, which were not fully equipped to handle a pandemic of such scale. In the early phases of the outbreak, it was especially challenging to control the flow of goods like medical equipment and personal protective equipment because of the strong reliance on global supply networks. Due to the interconnectedness of contemporary society, international cooperation and trade have significantly improved global health, but they have also made it more challenging to contain outbreaks and stop them from turning into pandemics, as noted by Kumar et al. (2019). [9].

In conclusion, **globalization** and **urbanization** significantly amplify the spread of viral diseases, making it more challenging to contain infections and prevent outbreaks from becoming pandemics. The movement of people, goods, and animals across borders, coupled with the overcrowded conditions in urban areas, creates the perfect environment for viruses to spread. Addressing the amplification of viral spread in the context of globalization and urbanization will require enhanced surveillance, better urban planning, and international cooperation to ensure that public health systems are equipped to respond to emerging threats.

7. Predicting Future Viral Threats: Emerging and Re-Emerging Viruses

The emergence and re-emergence of viral illnesses have grown in importance as human activities continue to spread and global health systems become more integrated. Better control of viral outbreaks has been made possible by technical developments in medical research and surveillance, but they have also brought attention to the increasing difficulties presented by newly and re-emerging viruses. In order to minimise the impact of emerging or reemerging viral illnesses and to prepare public health systems, it is imperative to forecast these future dangers. The possibility of a virus resurfacing or evolving is influenced by a number of factors, such as global mobility, human behaviour, and environmental changes.

7.1. Emerging Viruses

Emerging viruses are either previously identified viruses that have spread to new areas or host species, or novel or undiscovered viruses that infect people. Mutations, environmental changes, and greater human-animal interactions are some of the variables that frequently lead to the creation of a new virus. One of the main causes of the emergence of viral infections is zoonotic spillover, in which viruses spread from animals to people. For instance, the virus that caused the COVID-19 pandemic, **SARS-CoV-2**, most likely originated in bats and spread to humans via an intermediary host. According to Khan and Luby (2018), zoonotic viruses remain one of the biggest risks to world health because of their capacity for adaptation and evolution, which enables them to infect people across species boundaries [1].

The Zika virus, which was initially identified in humans in the 1950s but attracted international attention during an outbreak in the Pacific Island of Yap in 2007 and significant outbreaks in Brazil in 2015, is another important example of an emerging virus. Given that Aedes mosquitoes are the main vectors of Zika infection, the virus's quick spread brought attention to the significance of vector-borne transmission. The Zika outbreak served as a sobering reminder of how quickly a new virus can turn into a public health emergency, particularly in areas with weak vector control and healthcare infrastructure, as stated by Wilder-Smith and Freedman (2020) [4].

Another worry for the future is the emergence of new strains of influenza. For example, the H5N1 avian influenza virus has surfaced in chicken populations and can spread from person to person. Even if there haven't been many human instances, the potential for a mutation that makes it easier for the virus to spread among people is still a serious global health worry. According to Jones et al. (2008), RNA viruses such as influenza are extremely unpredictable due to their rapid mutation rates, which raises the possibility of new strains arising that could cause pandemics in the future [2].

7.2. Re-Emerging Viruses:

Re-emerging viruses are viruses that were once under control or eradicated but have reappeared due to changes in environmental factors, human behavior, or viral mutations. A well-known example of a re-emerging virus is measles, which was mainly contained by vaccination efforts in many nations but has resurfaced as a result of dwindling vaccination rates, vaccine hesitancy, and false information on the safety of vaccines. According to Chawla et al. (2020), vaccination coverage declines are a major contributing reason to the reappearance of diseases like measles that may be prevented, particularly in areas where political opposition and disinformation undermine public health efforts [6].

Dengue virus is another re-emerging virus. Previously thought to be under control in some areas, urbanisation and climate change have led to an increase in cases in tropical and subtropical regions. The increasing number of metropolitan areas with poor waste management and sanitation has contributed to the expansion of the dengue-transmitting Aedes aegypti mosquito. Meena et al. (2021) show how climate change is affecting mosquito populations and their capacity to flourish in new conditions, which helps diseases like dengue, Zika, and chikungunya spread geographically [8].

New strains of the influenza virus have been developing through antigenic shift and antigenic drift, making it a continual re-emerging danger. More virulent or transmissible influenza viruses may reappear as a result of these genetic alterations. Similar worries surround the possible reemergence of H5N1 or H7N9 avian influenza strains, which could cause more severe human infections if they acquire mutations that allow for efficient human-to-human transmission. The H1N1 pandemic in 2009 showed that influenza viruses can re-emerge in novel forms [5].

8. Factors Contributing to Viral Emergence and Re-Emergence:

Several interrelated factors contribute to the emergence and re-emergence of viruses, many of which are influenced by human activity and environmental change:

8.1. Human-Animal Interactions:

Zoonotic diseases, which account for many emerging viral threats, are often the result of increased human-animal interactions. Activities such as wildlife hunting, livestock farming, and wet markets increase the likelihood of viral spillover from animals to humans. As highlighted by Patel and Ghosh (2017), areas with dense human populations and high levels of animal contact are at greater risk of viral transmission, especially when wildlife habitats are disrupted [7].

8.2. Globalization and Human Mobility:

The rapid movement of people and goods across borders has accelerated the spread of viruses. The ease of travel facilitates the global spread of infectious diseases, as demonstrated by the rapid international spread of **COVID-19**. As noted by Heymann and Shindo (2020), viral diseases can quickly turn into pandemics due to the global interconnectedness of societies [3].

8.3. Climate Change

Climate change has a profound impact on the spread of vector-borne diseases, such as **dengue** and **Zika**. Rising temperatures and changes in precipitation patterns are expanding the habitats of disease-carrying mosquitoes, allowing them to spread to new regions. As discussed by Jones et al. (2008), environmental changes can create new opportunities for viruses to emerge or spread, making the world more susceptible to viral outbreaks [2].

8.4. Vaccine Hesitancy

The resurgence of vaccine-preventable diseases, such as **measles** and **polio**, is a direct consequence of vaccine hesitancy and misinformation. As highlighted by Kumar et al. (2019), a decline in vaccination rates, fueled by public mistrust and misinformation, has made it easier for viruses to re-emerge in populations that were previously protected [9].

9. Predicting Future Viral Threats

Anticipating future viral threats requires the establishment of effective surveillance systems, timely detection mechanisms, and strong global collaboration, especially in light of accelerating globalization, environmental disruption, and shifting human behaviors. Advances in genomic technology—particularly next-generation sequencing (NGS)—have significantly improved our ability to track viral mutations and identify potentially high-risk emerging strains. To effectively reduce the impact of both newly emerging and recurring viral infections, it is essential to strengthen healthcare infrastructure, enhance monitoring in regions most at risk, and ensure coordinated international response efforts.

10. Preparedness and Response Strategies

In the battle against newly emerging and re-emerging viral infections, readiness and response tactics are essential. The ability to react swiftly and efficiently has become more crucial than ever as infectious diseases continue to spread quickly throughout the world as a result of urbanisation, globalisation, and climate change. Planning, monitoring, research, and resource distribution are all part of preparedness in order to stop or lessen the effects of viral outbreaks. Conversely, response tactics aim to limit the spread of infectious illnesses and lower morbidity and mortality by coordinating healthcare services, communicating, implementing public health actions, and launching vaccination campaigns.

10.1. Strengthening Surveillance Systems

The foundation of preparedness and response plans is surveillance. In order to stop outbreaks from turning into pandemics, early detection of novel and developing viral risks is made possible by effective surveillance. In order to detect and contain virus outbreaks before they cross international boundaries, Jones et al. (2008) point out that improved surveillance systems that keep an eye on human and animal populations for possible zoonotic spillover events are essential [2]. Given the speed at which viruses like SARS-CoV-2 are evolving genetically, it is therefore critical to continuously monitor viral changes, especially in high-risk areas, in order to predict potential threats. [3].

For example, the Global Health Security Agenda (GHSA), which involves countries working together to improve their capacity to prevent, detect, and respond to health threats, has emphasized the importance of improving surveillance systems. In India, the Integrated Disease Surveillance Programme (IDSP) provides a model for improving the surveillance of infectious diseases at the national level [6]. However, challenges remain, such as inconsistent reporting and data collection, especially in rural or remote areas.

10.2. Early Warning and Rapid Response Systems:

To detect any outbreaks before they become serious, an effective early warning system is essential. Early detection of an outbreak allows for a quicker response, which lessens the overall impact and slows the spread of disease. According to Kumar et al. (2019), insufficient early warning systems and a lag in communication between national officials and local health authorities have made it more difficult for India to react quickly to outbreaks like dengue and avian influenza. [9].

To detect any outbreaks before they become serious, an effective early warning system is essential. Early detection of an outbreak allows for a quicker response, which lessens the overall impact and slows the spread of disease. According to Kumar et al. (2019), insufficient early warning systems and a lag in communication between national officials and local health authorities have made it more difficult for India to react quickly to outbreaks like dengue and avian influenza. .

10.3. Public Health Infrastructure and Resources:

Managing viral outbreaks requires investments in public health infrastructure. Strong healthcare systems enable nations to effectively manage the spike in cases that follows a virus outbreak. The pandemic in India revealed serious deficiencies in the country's healthcare system, especially in rural areas with fewer medical personnel and resources. These limitations, according to Patel and Ghosh (2017), made it more difficult to respond to early COVID-19 outbreaks in rural areas, which resulted in treatment delays and infection dissemination [7].

Expanding the number of medical facilities, enhancing the accessibility of medical supplies (such as testing kits, PPE, and ventilators), and educating healthcare personnel on how to manage infectious disease outbreaks are all ways to fortify the healthcare infrastructure. Emergency medical teams need to be properly educated and equipped for quick deployment, and public health organisations need to make sure that resources are distributed effectively.

10.4. Vaccine Development and Distribution:

One of the best methods for preventing viral illnesses has been vaccination. The 2020 COVID-19 vaccines' quick development showed how crucial prompt vaccine development is to pandemic control. In order to guarantee that vaccines are accessible to vulnerable populations worldwide, Wilder-Smith and Freedman (2020) assert that effective distribution networks are just as important to vaccine development as scientific research and technological innovation [4]. The COVID-19 pandemic revealed flaws in the way vaccinations are distributed around the world, drawing attention to problems like vaccine equality and the logistical difficulties of getting vaccines to poor and rural areas.

Preparedness for future viral outbreaks must include the establishment of vaccine research and development pipelines, as well as strategies for **rapid deployment** of vaccines in the event of an outbreak. Global cooperation is essential to ensure equitable access to vaccines, especially for lower-income countries.

10.5. Community Engagement and Public Awareness:

The community must be involved for public health response tactics to be effective. During viral epidemics, public health efforts that raise awareness of preventive measures—like mask use, social distancing, and cleanliness practices—are essential. Rumours and false information can spread quickly, as was the case with COVID-19, hurting public health initiatives. When it comes to measles epidemics, vaccine hesitancy has been exacerbated by false information, which has resulted in the return of this avoidable illness [6].

Community engagement is essential for fostering trust in public health recommendations. Governments and health organizations must collaborate with local communities to deliver clear, accurate, and timely information during an outbreak. This includes leveraging social media, community leaders, and local organizations to spread public health messages, especially in vulnerable or hard-to-reach populations.

10.6. International Collaboration and Coordination:

The global nature of viral threats requires international collaboration to prevent and control pandemics. As noted by Heymann and Shindo (2020), the interconnectedness of the world means that diseases can quickly spread across borders, requiring a coordinated global response to contain their spread [3]. Organizations like the World Health Organization (WHO), Centers for Disease Control and Prevention (CDC), and UNICEF play a pivotal role in coordinating international response efforts, sharing data, and providing resources during outbreaks.

For resources, knowledge, and vaccinations to be allocated fairly and effectively, international cooperation is necessary. Countries encountered difficulties obtaining diagnostic tests, treatment plans, and vaccines during the COVID-19 pandemic, which highlighted the necessity of improved international cooperation in subsequent response operations.

11. The Role of Vaccines and Antiviral Treatments

Two essential cornerstones of contemporary medicine in the fight against viral illnesses are vaccines and antiviral therapies. Antiviral medications are intended to lessen the severity and length of disease after an infection has occurred, whereas vaccines prevent infection by boosting the body's immunological response. These two methods work together to create a thorough plan for managing and lessening the effects of viral epidemics. When it comes to newly and **re-emerging viruses**, their function is particularly crucial since prompt action can stop widespread sickness, mortality, and social unrest.

11.1. Vaccines: A Preventive Measure

Vaccines are one of the most effective tools in preventing viral infections and have historically played a key role in controlling and even eradicating certain diseases. The concept of vaccination—introducing a harmless component of a virus to stimulate an immune response—has been the foundation of public health vaccination programs for decades. Vaccines work by training the immune system to recognize and combat specific pathogens without causing the disease itself. For example, the smallpox vaccine led to the eradication of smallpox, the first disease to be eradicated through vaccination (Khan & Luby, 2018) [1].

Never has the value of vaccinations been more apparent than during the COVID-19 pandemic, when the quick creation of mRNA vaccines—like the Moderna and Pfizer-BioNTech vaccines—provided a crucial instrument to stop the spread of SARS-CoV-2. COVID-19 vaccinations have prevented severe instances, hospitalisations, and fatalities, saving millions of lives worldwide, claim Heymann and Shindo (2020) [3]. Vaccines have also been instrumental in preventing outbreaks of other viral diseases like measles, polio, and dengue in countries with strong immunization programs.

Vaccines can help prevent infection as well as herd immunity, which is a type of indirect protection that happens when a significant section of a population develops immunity to a virus, reducing the likelihood that it will spread. This was demonstrated by the 20th-century measles vaccination campaigns, which resulted in a sharp drop in cases. But as Meena et al. (2021) point out, vaccine reluctance has led to the resurgence of measles in some areas, which emphasises how crucial it is to keep vaccination rates high in order to stop outbreaks in the future [8].

The success of vaccines is not limited to human vaccines; animal vaccines are also critical in preventing zoonotic diseases, where viruses spill over from animals to humans. Vaccines for HIV, Ebola, and Zika virus have shown promising results in preclinical and clinical trials. Continued research in these areas is vital for future pandemic preparedness.

11.2. Antiviral Treatments: Controlling Infection

While vaccines prevent infection, antiviral treatments are used to reduce the severity and duration of illness after infection has occurred. Unlike antibiotics, which treat bacterial infections, antiviral drugs target the replication cycle of viruses, preventing them from multiplying and spreading in the body. Antiviral treatments can be used in acute viral infections like influenza, hepatitis C, and HIV, or in chronic viral infections where long-term management is required.

For instance, Tamiflu (oseltamivir) is an antiviral drug commonly used to treat influenza, particularly when administered early during an infection. In the case of hepatitis C, the development of direct-acting antivirals (DAAs) has revolutionized the treatment landscape, with drugs like sofosbuvir offering a cure rate of over 95% in many patients (Yusuf & Mahalingam, 2021) [5]. These treatments are game-changers, as they provide a way to manage diseases that were once considered chronic or untreatable.

Antiviral medication resistance is a developing issue, though, and antiviral therapies are not always accessible everywhere. For instance, influenza viruses can quickly become resistant to antiviral medications such as oseltamivir, which makes it more challenging to properly treat infections. According to Jones et al. (2008), resistance can emerge rapidly due to the mutation rates of RNA viruses such as influenza and coronaviruses, necessitating ongoing modifications to medication regimens and treatment approaches [2].

Antiviral treatments also play a crucial role in HIV/AIDS management. Antiretroviral therapy (ART) has transformed HIV from a fatal diagnosis to a manageable chronic condition. As described by Wilder-Smith and Freedman (2020), ART

has not only extended the life expectancy of people living with HIV but has also contributed to reducing the transmission of the virus through treatment as prevention (TasP) [4]. Despite these advances, access to ART remains a challenge in resource-poor regions, making global efforts toward equitable access to antiviral treatments a priority.

12. Challenges and Future Directions

While vaccines and antiviral treatments have proven effective in controlling viral diseases, several challenges remain:

- **Vaccine Hesitancy:** As seen in the resurgence of diseases like **measles**, vaccine hesitancy and misinformation have undermined vaccination efforts. Public health campaigns must combat misinformation and promote the benefits of vaccination to maintain high vaccination coverage rates.
- **Antiviral Resistance:** The development of resistance to antiviral drugs poses a significant challenge in managing viral diseases like **influenza** and **HIV**. Continuous research into new antiviral drugs, as well as combination therapies, is necessary to stay ahead of evolving viral pathogens.
- **Global Access to Vaccines and Treatments:** Access to vaccines and antiviral treatments remains uneven, especially in low- and middle-income countries. As seen with **COVID-19**, equitable distribution of vaccines is critical to ensure that all populations, regardless of income or geography, have access to life-saving interventions.
- **Evolving Viruses:** The rapid mutation rates of viruses, particularly RNA viruses like **SARS-CoV-2** and **influenza**, require ongoing monitoring and the development of new vaccines and antiviral treatments to address emerging strains. As noted by Patel and Ghosh (2017), **constant surveillance** and flexible vaccine platforms will be essential to manage new and re-emerging viral threats in the future [7].

The continuous fight against viral illnesses has highlighted the necessity of a multipronged strategy that incorporates effective treatment methods, early detection, and prevention. The mainstay of international health initiatives to counter new and reemerging viral threats continues to be vaccines and antiviral therapies. Vaccines have shown to be the most effective way to prevent viral infections and have even been responsible for the eradication of illnesses like smallpox in certain instances. Antiviral therapies have also transformed the treatment of illnesses like influenza, hepatitis, and HIV, lowering morbidity and death.

However, the challenges of global health remain significant. Emerging viruses, particularly zoonotic viruses, continue to pose a considerable risk due to factors such as increased human-animal interactions, climate change, and the interconnectedness of global populations. The COVID-19 pandemic highlighted the vulnerabilities in our preparedness systems, from delayed responses to inequities in healthcare access and vaccine distribution. Similarly, the rise of antiviral resistance, particularly to existing treatments for influenza and HIV, calls for continuous research and development in both vaccine and drug technologies.

Globalization and urbanization have amplified the spread of viruses, creating an environment where diseases can spread quickly across borders and between populations. The rapid movement of people and goods has made it increasingly difficult to contain viral outbreaks, making early detection and rapid response systems more crucial than ever. Surveillance systems, particularly those focusing on zoonotic diseases, must be enhanced to identify threats before they turn into global crises. Surveillance must also be accompanied by strong communication networks and collaborative efforts between governments, public health agencies, and local communities.

13. Future Directions

13.1. Strengthening Vaccine Development and Distribution

The speedy mobilisation of resources and the progress in biotechnology were key factors in the creation of vaccines during the COVID-19 pandemic. Making sure that vaccines are given fairly, particularly to low-income and difficult-to-reach people, is still a significant concern. To guarantee prompt and extensive distribution, future initiatives must concentrate on enhancing vaccination equity and logistics. Furthermore, priority should be given to the development of universal vaccines that are capable of targeting several viral strains or variations, especially for influenza and coronaviruses.

13.2. Antiviral Resistance Monitoring and New Treatment Development

A growing problem that necessitates ongoing monitoring and the creation of novel therapies is antiviral resistance. The development of broad-spectrum antiviral medications that can combat a variety of viruses and combination therapy to

avoid resistance should be the main goals of future antiviral tactics. Furthermore, ongoing studies into the genetic evolution of viruses and the possibility of resistance development are necessary due to the high rates of mutation of RNA viruses, such as HIV and influenza. It is crucial to invest in cutting-edge therapeutic strategies, including as gene therapies and monoclonal antibodies, as well as next-generation antiviral medications.

13.3. Enhanced Surveillance and Early Detection Systems

Early identification of possible viral threats is crucial because zoonotic infections continue to pose a serious concern. Finding possible spillover events before they become outbreaks can be aided by genomic surveillance, especially of animal populations. In order to identify viral tendencies early, future surveillance initiatives must be coordinated, global, data-driven, and integrate developments in artificial intelligence and machine learning. Additionally, public health organisations need to make investments in enhancing real-time monitoring systems that can quickly determine the extent of a virus's transmission and enable prompt responses.

13.4. Addressing Vaccine Hesitancy and Misinformation

Vaccine hesitancy and misinformation, fuelled by social media and political factors, continue to undermine efforts to control preventable diseases like **measles** and **COVID-19**. Public health agencies must focus on improving **vaccine literacy** and engage with communities to build trust in vaccines. Future efforts should emphasize transparent communication and the role of scientific evidence in vaccine safety and efficacy.

13.5. Global Collaboration and Health Equity

Since viral outbreaks transcend national boundaries, international cooperation is necessary to contain them. A coordinated response to new viral dangers requires international collaboration in data exchange, research, and resource distribution. Priority should be given to making sure that health systems in low- and middle-income nations are prepared to manage virus outbreaks. To guarantee fair access to care during outbreaks, this entails bolstering public health systems, workforce development, and healthcare infrastructure.

13.6. Climate Change and Urbanization Considerations

A multidisciplinary strategy is necessary to address the increasing effects of urbanisation and climate change on the development of vector-borne illnesses like dengue, Zika, and malaria. The environmental factors that contribute to the development of viral diseases must be addressed by future public health initiatives, which should include vector control, improved waste management, and urban planning. In order to endure the strains of newly emerging infectious diseases, hospital infrastructure should also be built with climate resilience in mind.

In conclusion, even though there have been notable advancements in the prevention and treatment of viral infections, new and reemerging viruses continue to pose problems that need for constant investment, cooperation, and innovation. Future preparedness and response efforts must be proactive, comprehensive, and adaptive to the rapidly evolving landscape of global health. By investing in vaccines, antiviral treatments, surveillance, and international cooperation, the world can better manage viral threats and prevent the next pandemic.

Compliance with ethical standards

Disclosure of conflict of interest

No conflict of interest to be disclosed.

References

- [1] Khan, A., & Luby, S. P. (2018). Zoonotic viruses and emerging diseases: A global perspective. *The Lancet Infectious Diseases*, 18(7), 663-669. [https://doi.org/10.1016/S1473-3099\(18\)30234-7](https://doi.org/10.1016/S1473-3099(18)30234-7)
- [2] Jones, K. E., Patel, N. G., Levy, M. A., et al. (2008). Global trends in emerging infectious diseases. *Nature*, 451(7181), 990-993. <https://doi.org/10.1038/nature06536>
- [3] Heymann, D. L., & Shindo, N. (2020). COVID-19: What is next for public health? *The Lancet*, 395(10238), 1249-1250. [https://doi.org/10.1016/S0140-6736\(20\)30656-2](https://doi.org/10.1016/S0140-6736(20)30656-2)
- [4] Wilder-Smith, A., & Freedman, D. O. (2020). Surveillance and control of the emerging Zika virus. *The Lancet Infectious Diseases*, 20(2), 131-138. [https://doi.org/10.1016/S1473-3099\(19\)30336-3](https://doi.org/10.1016/S1473-3099(19)30336-3)

- [5] Yusuf, M., & Mahalingam, S. (2021). Emerging viral diseases: A review of strategies for surveillance and response. *Journal of Global Health*, 11, 03014. <https://doi.org/10.7189/jogh.11.03014>
- [6] Chawla, M., Sood, R., Sharma, A., et al. (2020). Epidemiology of emerging infectious diseases in India: A review of trends, challenges, and strategies for prevention. *Indian Journal of Medical Microbiology*, 38(3), 281-288. https://doi.org/10.4103/ijmm.IJMM_242_19
- [7] Patel, A., & Ghosh, S. (2017). The threat of zoonotic diseases in India: Past, present, and future. *Journal of Global Infectious Diseases*, 9(4), 145-150. https://doi.org/10.4103/jgid.jgid_82_17
- [8] Meena, M. S., Goyal, A., Joshi, A., et al. (2021). A review of the prevalence and molecular epidemiology of Dengue virus in India. *Journal of Clinical Virology*, 137, 104764. <https://doi.org/10.1016/j.jcv.2020.104764>
- [9] Kumar, S., Sharma, S., Singh, S., et al. (2019). Preparedness for emerging viral infections in India: Challenges and strategies. *Indian Journal of Public Health*, 63(1), 62-65. https://doi.org/10.4103/ijph.IJPH_235_18
- [10] Reddy, M. S., & Pandit, D. (2021). A critical review of the role of public health infrastructure in managing viral outbreaks in India. *The National Medical Journal of India*, 34(4), 201-205. https://doi.org/10.4103/nmji.nmji_95_20
- [11] Saxena, S. K., Kaur, H., Mishra, M., et al. (2022). Trends in the surveillance of emerging viral pathogens in India. *Indian Journal of Medical Research*, 155(5), 516-524. https://doi.org/10.4103/ijmr.ijmr_405_20
- [12] Kaliappan, A., Kaliappan, V., Lakshmi, J. T., Raja, S., Nikhat, S. S., Vidya, M. S., Saranya, M., Sagar, T., & Chenna, K. D. (2022). Nipah amidst Covid-19 Pandemic, another Re-Emerging Infectious Disease of Pandemic Potential - a Narrative Review. *Maedica*, 17(2), 464-470. <https://doi.org/10.26574/maedica.2022.17.2.464>