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Abstract 

In this study, we look at using AI and ML to strengthen cybersecurity in the United States by resolving known 
weaknesses and coming up with a dependable and privacy-aware defense plan that follows the rules. Researching with 
federated learning, LSTM, and CNN in an AI structure, the system was examined using information from SCADA/ICS 
systems along with real and simulated datasets, complying with the NERC CIP, FERC orders, and cybersecurity 
guidelines by the U.S. Department of Energy. By having AI enhancements, the new framework performed better, was 
harder to break, showed lower latency, and could sense and respond to threats in no time such as data spoofing, 
command injection, and DDoS attacks. This research is relevant to smart grid cybersecurity as well as protective 
measures for SCADA and ICS systems, the security of the country’s energy infrastructure, and artificial intelligence-
based solutions for identifying threats. In addition, the study introduces federated learning into live systems to ensure 
privacy in cyber defense and provides a suitable intelligent system to address immediate threats in national smart grids. 
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1. Introduction

1.1. Smart Grid Adoption in the United States 

The United States has been at the forefront of smart grid adoption and government programs at both national and 
regional levels are promoting digital advances in the energy industry. To improve how the grid functions, operates, and 
recovers, both the DOE and other legal agencies have heavily funded grid modernization plans. According to the EIA, by 
the year 2023, 100 million smart meters will be deployed throughout the U.S., providing service to about 80% of electric 
customers. Due to these smart meters, data collection is possible in today’s grids, making it easy for utilities to monitor 
power use as it happens, react to power outages promptly, and introduce new dynamic pricing schemes. To improve 
automated fault detection, distributed energy applications, and management from a distance, utilities are turning to 
edge devices, intelligent substations, and distributed control systems as well as AMI. As these improvements increase 
the grid’s dependability and help save the environment, they introduce new problems and open the grid to risks from 
cyber threats 

1.2. Cybersecurity Risks in the Evolving Grid 

As the grid starts to rely on data and interconnect more, cyberattacks also become more common and devastating. With 
more activities being performed on digital systems, hackers have more ways to harm the grid, making the entire system 
more vulnerable to large-scale disruption. Because many legacy SCADA systems do not have security built in, connecting 
them to the internet and IoT devices now introduces possibilities for criminals to seize control. Examples of threat 
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vectors are injecting malware, spoofing protocols, carrying out phishing attacks, using ransomware, and launching DDoS 
attacks. Because of these attacks, homes and businesses might lack power which could affect whole countries in severe 
ways. Attacks in 2015 on Ukraine’s power systems and ransomware attacks on the Colonial Pipeline in 2021 show the 
serious effects cyber threats have on the energy sector. As a result, members of the energy industry are now paying 
closer attention and looking for new solutions to protect smart grids. 

1.3. Motivating AI-Augmented Defense 

The current approach to securing smart grids is important but proves insufficient as cyber threats continue to rise 
quickly. IDS systems that match signatures, ordinary firewalls, and repetitive security protocols do not match the quick 
and flexible requirements for stopping zero-day attacks and advanced methods by adversaries. In addition, the size of 
data produced by grid equipment increasingly means that detecting and responding to threats can’t be done manually. 
In such a situation, AI and ML provide valuable answers. They can independently scan a lot of data, spot anything 
unusual, spot uncommon attacks, and handle responses with limited involvement by people. LSTM networks have 
proven capable of finding time-related problems, while CNNs have been successful at locating manipulations of control 
signals. Federated learning works by training a model on many edge devices, without collecting the data centrally. 
Integrating AI into their systems allows utilities to move from reactive cybersecurity to a position where they 
automatically react to threats and constantly enhance their ability to detect them. With these systems, companies can 
monitor and control situations, following changes in regulations, so they are crucial for tomorrow’s energy system. 

 

Figure 1 Smart Grid Ecosystem and Vulnerable Entry Points 

2. Literature Review 

2.1. State of Cybersecurity in Smart Grids 

The emergence of smart grids represents a significant shift in the energy sector, offering efficiency, flexibility, and real-
time management of resources. However, the integration of digital communication and control technologies into the 
grid infrastructure also introduces numerous cybersecurity challenges. As a cyber-physical system, the smart grid is 
vulnerable to threats targeting both its digital and physical components. Conventional security measures such as 
firewalls, encryption, and signature-based intrusion detection systems have been implemented, yet they often fall short 
in addressing advanced, adaptive, or unknown threats. These tools typically focus on known attack patterns and lack 
the ability to identify zero-day exploits or subtle anomalies in real time. As a result, smart grid security must evolve 
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toward intelligent, predictive, and autonomous systems capable of monitoring, detecting, and responding to complex 
cyber threats across all operational layers. 

2.2. Notable Cyber Incidents in Energy Infrastructure 

Numerous cyber incidents in recent years have underscored the vulnerabilities present in critical energy infrastructure. 
(Ukraine Power Grid Attack, 2015), Ukraine's power grid was targeted in a coordinated cyberattack that resulted in a 
blackout affecting more than 230,000 citizens. The attackers used phishing emails, malware (Black Energy and KillDisk), 
and remote access tools to disrupt control systems. Similarly, the 2021 Colonial Pipeline ransomware attack, though 
not directly targeting the power grid, disrupted fuel distribution across the eastern United States, demonstrating the 
broader impact of cyberattacks on interconnected infrastructure. These events illustrate the urgent need for enhanced 
cybersecurity frameworks that can proactively detect, isolate, and mitigate threats in real-time. 

2.3. Role and Limitations of Traditional Cybersecurity Approaches 

Traditional cybersecurity mechanisms in industrial control systems (ICS) and operational technology (OT) 
environments are largely reactive, relying on predefined rules and signature-based detection. While these systems offer 
baseline protection, they are ineffective against novel attacks, insider threats, or advanced persistent threats (APTs). 
Moreover, many legacy SCADA systems lack modern security features such as encryption, authentication, and access 
controls, making them easy targets for attackers. Perimeter-based defenses are insufficient when attackers exploit 
vulnerabilities within internal networks or leverage compromised devices to move laterally. As smart grids become 
more complex and interconnected, it is essential to adopt dynamic, intelligent security solutions that can adapt to 
emerging threats and provide real-time situational awareness. 

2.4. Emergence of AI in Cybersecurity 

Artificial Intelligence (AI) and Machine Learning (ML) offer powerful tools to overcome the limitations of traditional 
security methods. By analyzing vast datasets and identifying patterns that indicate malicious behavior, AI systems can 
detect zero-day attacks and adapt to new threat models. Supervised learning methods like Support Vector Machines 
(SVM) and Random Forests, as well as unsupervised techniques like k-means clustering, have shown promise in 
cybersecurity applications. More advanced architectures, such as Long Short-Term Memory (LSTM) networks and 
Convolutional Neural Networks (CNNs), have been applied to intrusion detection, anomaly recognition, and behavioral 
analysis in smart grid environments. These models improve threat detection accuracy, reduce response time, and enable 
automation in high-volume, complex networks. 

2.5. AI Applications in Smart Grid Cybersecurity 

Recent studies have explored the application of AI in smart grid cybersecurity with promising results. LSTM networks 
have demonstrated the ability to identify temporal anomalies in telemetry data, while CNNs have been used to classify 
control commands and detect abnormal operations. Federated learning—a decentralized approach—has enabled 
collaborative model training across distributed grid components without compromising data privacy. AI has also been 
integrated into SCADA systems to support predictive anomaly detection and automated threat containment. Although 
many of these technologies have shown success in simulations and testbeds, real-world deployment remains limited, 
emphasizing the need for further validation and infrastructure alignment. 

2.6. Identified Research Gaps and Opportunities 

Despite progress in integrating AI into smart grid cybersecurity, several gaps remain. Most AI models have not been 
deployed in real SCADA or SOC environments, limiting their practical application. Furthermore, many models are 
trained on synthetic or narrow datasets, raising concerns about their robustness and generalizability. Ethical and 
regulatory aspects, such as compliance with data governance policies and transparency of AI decisions, are 
underexplored. Additionally, emerging threats like adversarial attacks on AI models require greater attention in smart 
grid contexts. Future research must focus on developing scalable, interpretable, and regulation-compliant AI 
frameworks that are resilient to both technical and organizational challenges within critical infrastructure 
environments. 

Many impactful cyber incidents affecting energy supply have made it clear that strong cybersecurity is essential for 
smart grids. For many observers, the 2015 attack on the Ukrainian electricity grid stands out the most. The incident was 
the first known cyber-attack to successfully hit a power grid. The attack was managed by a group of skilled cyber 
attackers, who also used Black Energy and KillDisk malware to take control of systems at the Ukrainian power 
companies. Thus, more than 230,000 residents suffered a power outage during the turbulent winter season. Its 
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complexity surprised experts; the attack used social engineering, spear phishing, malware and remote access tools to 
demonstrate the range of methods cybercriminals can exploit smart grid systems.  

(Colonial Pipeline, 2021), the Colonial Pipeline regulatory authorities were also targeted by the Darkside cybercriminal 
group in an attack. Because the attack hit IT systems instead of the crucial operational technology, there was still 
widespread alarm and fuel scarcity along the East Coast. Operations at the affected pipeline were ceased as soon as the 
incident was noticed, demonstrating how IT and OT systems in infrastructure are related. While this was not a 
deliberate attack on an energy grid, it did indicate the big problems that can hit important energy sectors due to cyber-
attacks.  

Such incidents prove that modern energy systems are at risk and that cyber-attacks have real and serious consequences. 
They indicate clearly that there is a real risk because these attacks happen everywhere. They can influence huge 
numbers of people, bring down a nation’s economy and threaten the public. As a result, companies need cybersecurity 
systems that are smart, automatic and predictive to identify security breaches as early as possible and act quickly. 

Table 1 Summary of Existing Research on AI for Smart Grid Cybersecurity 

Author(s) Year AI Technique Target 
Component 

Key Findings Limitations 

Geller et al. 2019 LSTM Neural 
Networks 

SCADA anomaly 
detection 

Detected temporal 
anomalies in grid signals 
with >95% accuracy 

Requires large, labeled 
datasets; sensitive to 
data drift 

Alipour et 
al. 

2020 CNN + 
Autoencoder 

Smart meter 
data 

Identified spoofed 
consumption patterns 
with low false-positive 
rates 

High computation cost on 
embedded devices 

Yan and 
Qian 

2017 SVM with Feature 
Selection 

AMI network 
traffic 

Improved detection of DoS 
attacks in wireless sensor 
networks 

Limited scalability to full-
scale deployments 

Liu et al. 2021 Federated 
Learning (FL) 

Distributed 
control systems 

Preserved data privacy 
while achieving >90% 
detection accuracy 

Communication 
overhead and 
synchronization 
complexity 

Ozay et al. 2016 Random Forests, 
PCA 

Phasor 
Measurement 
Units 

Detected false data 
injection attacks in PMU 
streams 

Performance degraded 
with increasing noise 
levels 

Li et al. 2022 Hybrid LSTM-
CNN 

Substation 
protection 
system 

Real-time classification of 
command injection and 
firmware modification 
threats 

High training time and 
dependency on feature 
engineering 

Kim and 
Park 

2020 Deep 
Reinforcement 
Learning 

Grid intrusion 
response 

Enabled automated 
decision-making for 
containment of cyber-
physical attacks 

Requires robust 
simulation 
environments; not yet 
field-tested 
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Figure 2 Evolution of Cyber Defense Technologies in Smart Grids 

3. Methodology 

This study adopts a multi-layered methodology that combines federated learning with deep learning models, 
specifically Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN), to build a scalable and 
intelligent cybersecurity framework for smart grid environments. The methodology is divided into data preparation, 
model architecture design, system integration, and evaluation. 

3.1. Data Collection and Preprocessing 

To evaluate the framework, both real-world and synthetic datasets were used. Real-world datasets were obtained from 
publicly available intrusion detection system (IDS) logs and smart grid telemetry sources, while synthetic datasets were 
generated to simulate various attack scenarios, including data spoofing, command injection, and DDoS attacks. Data 
preprocessing involved normalization, encoding of categorical features, and the creation of time-series sequences to 
train the LSTM networks. Feature selection was based on correlation analysis and domain relevance. 

3.2. Federated Learning Architecture 

A federated learning setup was implemented to enable distributed model training across different grid components, 
such as substations, smart meters, and edge devices. Instead of centralizing raw data, each node trains a local model 
and sends only the model parameters to a central aggregator. This approach preserves data privacy while enabling 
collaborative learning across heterogeneous systems. The federated server synchronizes global model weights using a 
weighted average of local updates. TensorFlow Federated was used as the primary framework for implementation. 

3.3. Deep Learning Model Design 

Two deep learning models were used. The LSTM model was configured to capture temporal dependencies in telemetry 
data. It included multiple memory cells with dropout layers to reduce overfitting and was trained using mean squared 
error (MSE) as the loss function. The CNN model was employed to classify control actions and detect spatial anomalies 
in grid traffic data. Both models were implemented using TensorFlow and Kera's libraries and trained using a 
combination of real-time and offline datasets. 

3.4. System Integration and Deployment 

The framework was integrated into a simulated SCADA/ICS environment to assess real-time performance. The testbed 
included components such as Programmable Logic Controllers (PLCs), Human-Machine Interfaces (HMIs), and Remote 
Terminal Units (RTUs), all emulated using open-source ICS tools. The AI models were deployed at the edge level for 
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local detection and connected to a cloud-based analytics dashboard for central monitoring. The system architecture 
ensured minimal latency and allowed for real-time anomaly alerts and mitigation strategies. 

3.5. Evaluation Metrics 

The performance of the proposed framework was evaluated based on multiple metrics, including detection accuracy, 
false positive rate, precision, recall, F1-score, and latency. Resilience was also tested under adversarial conditions using 
evasion and poisoning attacks. The framework's results were benchmarked against traditional IDS systems to highlight 
improvements in threat detection capabilities and response time. The evaluation also included stress-testing under 
varying network conditions to assess robustness and scalability. 

• To evaluate classification tasks, I use Precision, Recall and the F1-score.  
• AUC-ROC is measured for cases where the goal is binary or multi-class anomaly detection.  
• FPR and Detection Latency play a big role in implementing this technology where time matters. 

3.6. Continuous Learning and Model Updating 

Smart grid cyber systems are always changing as fresh threats come up regularly. To keep running well, the system uses 
incremental learning and regularly retrains itself. If the accuracy of the model starts to drop, drift detection mechanisms 
call for its updates. Tools used by human analysts provide feedback to help enhance the accuracy of predictions, fine-
tune models and modify the rule-based reconnaissance process. 

 

Figure 3 AI/ML Pipeline for Smart Grid Cyber Defense 

3.7. Adversarial Robustness and Threat Modeling 

To effectively counter adversarial threats targeting AI models—such as evasion attacks (where malicious inputs are 
crafted to bypass detection), data poisoning (where training data is subtly corrupted to mislead the model), and model 
inversion (where attackers try to reconstruct sensitive input data from outputs)—a robust set of hardening strategies 
has been integrated into the machine learning pipeline. One of the primary defenses involves adversarial training, which 
enhances model resilience by including intentionally manipulated examples during the training process. Techniques 
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like Fast Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD) are used to generate these adversarial 
samples, allowing the models to learn how to recognize and resist deceptive patterns. In addition, gradient masking is 
employed to obscure the gradient information that attackers often exploit when crafting adversarial inputs, while 
feature smoothing ensures that small perturbations in input data do not result in disproportionately large changes in 
output predictions, thereby improving model stability. The architecture also incorporates ensemble learning, where the 
outputs of multiple independently trained models—each with varying architectures or training datasets—are 
aggregated to make final decisions. This diversity in model reasoning increases the system’s robustness by making it 
harder for adversarial inputs to universally deceive the system. Furthermore, to ensure continuous adaptability in real-
time environments, each edge-deployed model is equipped with drift detection mechanisms, such as ADWIN (Adaptive 
Windowing) and Kolmogorov–Smirnov statistical tests, which monitor incoming data streams for shifts in distribution. 
When anomalies or drifts are detected, the system triggers automatic retraining to restore model accuracy and 
relevance. These combined defenses create a multilayered shield that preserves the integrity, reliability, and 
trustworthiness of AI-driven cybersecurity systems, even in the face of evolving, sophisticated adversarial techniques. 

Table 2 Machine Learning Models and Their Application to Smart Grid Cybersecurity 

Model Type Algorithm Used Target Application Advantages Limitations 

Deep Learning 
(DL) 

LSTM Time-series 
telemetry analysis 

Captures temporal 
dependencies; high 
accuracy 

Requires large datasets 
and computational power 

Deep Learning 
(DL) 

CNN ICS command stream 
classification 

Strong pattern 
recognition; robust to 
noise 

Less interpretable; needs 
tuning for sequential data 

Supervised ML Random Forest, 
SVM 

Smart meter and AMI 
traffic analysis 

Fast training; good for 
structured data 

Requires labeled datasets 

Unsupervised 
ML 

Autoencoder, 
Isolation Forest 

Anomaly detection in 
SCADA logs 

Works without labels; 
detects unknown 
attacks 

Higher false positives if 
not tuned properly 

Distributed ML Federated 
Learning 

Substation-level 
decentralized 
protection 

Preserves privacy; 
scalable 

Communication overhead; 
model convergence issues 

4. System Design 

4.1. Overview of Architecture 

Various advanced machine learning models are being used with this framework to help a multi-layered cybersecurity 
system detect anomalies and respond automatically to threats. The system mainly consists of some connected modules. 
The Data Ingestion Layer grabs data from smart meters, sensors, SCADA log reports and external threat intelligence, 
using safe APIs and message queues. Here, this data is handled by Preprocessing and Feature Engineering Layer, where 
it is straightened out, restructured, scaled and information on how it changes over time and statistics are derived, 
ensuring an optimal model can be used. Both known and new anomalies are identified across various data streams 
because the ML Inference Engine supports trained models like LSTM, CNNs and Isolation Forests. The Alert Generation 
and Correlation Engine checks the outputs from the engine and compares them to known attack signatures, using rules 
to prioritize the alerts. Threats identified by the system are shown on a Visualization and Analyst Dashboard to help 
SOC teams understand their severity, how they started and steps for addressing them. Analysts’ notes and what the 
system finds are used in a Feedback and Learning Loop to continuously update and train the AI, so it responds well to 
newer cyber-attacks. 

4.2. SCADA/ICS Integration 

Industries rely on SCADA and ICS, so smooth integration is very important for any airborne platform. Modules for AI 
are put inside Docker or Kubernetes containers so they can be added alongside controls without much interruption. 
This device is compatible with modern and older equipment because it uses the Modbus, DNP3 and IEC 61850 protocols. 
The outcomes from running inference models are used to produce alerts. These alerts can either appear on human 
screens or set off actions via PLCs. 
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4.3. Cloud and Edge Deployment Options 

To address latency and bandwidth limitations, the system supports hybrid cloud-edge deployment: 

Low-latency anomaly detection happens at Edge Nodes placed at substations or AMI gateways.  

Cloud Backends are designed to perform threat intelligence analysis, train models over a long period and coordinate 
activities across the whole system. As a result, devices at the edge can act in almost real time while the bulk of learning 
and correlation happens in the scalable and strong cloud. 

Table 3 Functional Modules and Integration Aspects 

Module Functionality Integration Point Technology Stack / Tools 

Data Ingestion Layer Collects grid telemetry, ICS logs, 
meter data, threat feeds 

AMI, SCADA, IDS, 
external APIs 

Kafka, MQTT, OPC-UA, REST 
APIs 

Preprocessing Engine Cleans, transforms, and extracts 
features from data 

On-premises edge 
servers 

Pandas, NumPy, Scikit-
learn, TensorFlow-Data 

ML Inference Engine Performs anomaly detection using 
trained AI models 

SCADA monitoring 
systems 

TensorFlow, PyTorch, 
ONNX Runtime 

Alert Correlation & 
Response 

Correlates outputs and initiates 
responses or alerts 

Security Operations 
Center (SOC) 

ELK Stack, Suricata, SIEM 
platforms 

Dashboard & 
Visualization 

Displays alerts, trends, root causes 
to analysts 

Utility control rooms Grafana, Kibana, custom 
web dashboards 

Feedback & 
Continuous Learning 

Updates model based on analyst 
input and retrained periodically 

Analyst terminal, 
cloud backend 

Active learning APIs, 
federated update protocols 

 

Table 4 Resource Consumption: Edge vs. Cloud Trade-offs 

Resource Metric Edge Node (e.g., Substation) Cloud Backend (Centralized) 

CPU Usage ~45–65% (Raspberry Pi 4 / Jetson Nano) ~20–40% (VM with GPU acceleration) 

Memory Footprint ~1.2–1.8 GB per model ~6–10 GB per analytics pipeline 

Latency (Inference) 200–500 ms 1–2 seconds (excluding upload delay) 

Network Load Low (only model updates sent) High (continuous telemetry streaming) 

Energy Consumption ~5–10 W ~100–150 W per instance 

Edge setups optimize for real-time local detection and privacy preservation but are hardware constrained. Cloud 
servers, while resource-rich and ideal for deep model training and coordination, suffer from upload delays and 
centralized risks. The hybrid system leverages both to balance real-time response with long-term learning. 

5. Results and discussion 

5.1. Experimental Setup 

To assess the AI system, we created simulated smart grid networks using many types of real data. Among them was the 
use of typical telemetry logs, generated by software, that simulated regular and unusual grid activities to help test how 
well detection tools work. In addition, tests using common ICS/SCADA attack scenarios—such as command injection 
and taking unapproved control—were performed to check the system’s resilience to real cyber-attacks. Other training 
and validation data sets from ICS-CERT advisories, CICIDS intrusion benchmarks and smart meter records were used in 
our work. Because of using both synthetic, historical and practical data, the evaluation of the system’s detection 
accuracy, strong-point and flexibility was very thorough.  
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In the virtual test, the software models were placed with made-up substations, working with realistic communication 
protocols (DNP3, Modbus) and considering expected delays. 

5.2. Key Performance Metrics 

Realistic operating conditions were used to assess the system’s accuracy, dependability and strength with various key 
performance indicators. The measured proportion of rightly spotted attacks or anomalies showed the main 
performance indicator for the model. To reduce alert fatigue in SOCs, the team looked at the rate at which the system 
issued incorrect alerts during normal times using the False Positive Rate (FPR). Detection Latency reported the time 
from when a threat was located to when an alarm about it was produced, reflecting how quickly the system can respond. 
Lastly, we assessed the framework’s reliability with a System Resilience Score, demonstrating how well it handled 
partial data loss, communication lag or reduced system inputs found in live smart grid situations. Due to the data from 
these measures, the team was able to judge the operation and dependability of the system. 

The results show significant improvements over baseline (non-AI) detection systems: 

Table 5 Performance Metrics of AI Models in Smart Grid Cyber Defense 

Threat Type Model Accuracy 
(%) 

False 
Positive Rate 
(%) 

Detection 
Latency (ms) 

Notes 

Command 
Injection (ICS) 

LSTM 96.2 3.1 420 Detected sequence 
anomalies in control 
commands 

AMI Spoofing CNN + 
Autoencoder 

94.8 4.0 380 Identified falsified energy 
usage patterns 

DDoS on 
Substation 

Random Forest 91.5 5.8 290 Detected high-volume 
traffic spikes 

False Data 
Injection 

Isolation 
Forest 

92.3 6.5 510 Detected abnormal sensor 
readings with minimal 
training 

Ransomware 
Signature 

SVM with PCA 89.9 5.2 450 Recognized behavioral 
patterns of file access 
anomalies 

5.3. Simulated Case Studies 

5.3.1. Case Study 1: Command Injection Attack on a SCADA Substation 

An attack simulation took place where an actor injected wrong signals to cause circuit breakers to open and close. Over 
96% of the time, the LSTM-based system sensed anomalies in timing and prompted an alarm before the final order was 
sent. 

5.3.2. Case Study 2: AMI Meter Spoofing 

Scenario software was written to fake smart meter readings and reduce the known patterns of usage. Using the CNN-
autoencoder method, the system noticed unusual changes in spending over different periods and similar devices, 
suggesting that something suspicious may be going on. 

5.3.3. Case Study 3: Distributed Denial-of-Service (DDoS) on Communication Gateway 

A burst of traffic at a high rate was simulated over the communication link at the substation. The system spotted atypical 
readings and movements and was able to separate the node at risk, showing that it worked well both for detection and 
reaction. 
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Figure 4 Detection Latency Comparison Across Models 

5.4. Real-World and Pilot Deployment Insights 

Although widespread deployment of AI-augmented cybersecurity security systems in live smart grid environments 
across the United States is still in the early stages, several pilot programs and utility collaborations have produced 
encouraging and insightful results. One such initiative involved a partnership with a Midwest utility company, where an 
LSTM-based anomaly detection model was integrated into the substation's SCADA system using Docker 
containerization for seamless deployment. During a 30-day operational trial, the system successfully identified 17 
anomalies that had previously gone undetected by traditional methods, including subtle timing drifts and command 
replay sequences. These detections led to the implementation of targeted security policies and operational adjustments, 
demonstrating the value of intelligent monitoring. In a separate pilot with a Texas-based smart meter operator, edge-
computing units running CNN-autoencoder models were installed to analyze over 1.5 million telemetry data points 
directly at the source. The local processing capability significantly reduced response time and minimized network 
traffic, while also decreasing false positive alerts by 28% compared to the utility’s existing Intrusion Detection System 
(IDS). Importantly, the AI models operated effectively alongside legacy Modbus-based infrastructure, eliminating the 
need for extensive hardware overhauls. Both pilots underscored the feasibility and practicality of deploying AI-
enhanced cybersecurity in heterogeneous energy environments, highlighting benefits such as reduced detection latency 
(averaging under 500 milliseconds), high detection accuracy, adaptability to existing grid architectures, and the ability 
to deliver actionable insights with minimal human intervention. These early implementations provide a compelling 
foundation for broader adoption and suggest that intelligent, edge-enabled cybersecurity solutions can enhance 
resilience, efficiency, and situational awareness in modern and transitional grid systems alike. 

6. Policy Relevance 

6.1. Alignment with U.S. Cybersecurity Strategies 

There is close overlap between using artificial intelligence in smart grid cybersecurity and various federal and 
regulatory efforts to grow and protect the nation’s energy systems. DOE’s Cybersecurity Strategy (2020–2025) states 
that agencies should use active defense, rely on automation for threat finding and introduce advanced analytics to cyber 
activities. All of these can be achieved with AI technology. The Bulk Power System requires high security standards from 
FERC which artificial intelligence systems help achieve by noticing and dealing with issues instantly. NIST SP 800-82 
and SP 800-207, issued by the National Institute of Standards and Technology, suggest the usage of AI technologies in 
cyber and physical systems of the industrial sector. In a similar way, the North American Electric Reliability Corporation 
(NERC) Critical Infrastructure Protection (CIP) Standards suggest monitoring systems constantly, managing 
vulnerabilities and detecting any changes. AI helps accomplish this by using automated log analysis, configuration 
monitoring and forecasting risks. As a group, these structures emphasize that AI strengthens the ability of power grids 
to remain functional.  

This proposed system is as good or better than expected, since it can detect and address threats automatically, rapidly 
and with solid justification, whether known or unknown. 
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Table 6 AI Capabilities Mapped to U.S. Cybersecurity Policy Requirements 

Policy Framework Relevant Directive/Standard AI-Augmented Capability Compliance Contribution 

DOE Cybersecurity 
Strategy 

Goal 3: Enhance detection and 
response capabilities 

Real-time anomaly 
detection and alert 
generation 

Enables active defense and 
situational awareness 

FERC Cybersecurity 
Mandates 

RM18-20-000; RM22-3-000 Predictive threat 
modeling; risk scoring 

Supports risk-informed 
planning and investment 

NERC CIP CIP-007 (System Security 
Management) 

Autonomous log analysis; 
vulnerability scanning 

Fulfills automated 
monitoring and patch 
management 

NIST Cybersecurity 
Framework 

ID.RA, DE.CM, RS.AN Machine learning-based 
threat recognition 

Provides adaptive controls 
and continuous monitoring 

NIST Zero Trust 
Architecture 

SP 800-207 AI-based behavioral 
profiling for identity 
verification 

Enforces least-privilege 
access and dynamic 
segmentation 

Executive Order 
14028 (2021) 

Improve the Nation’s 
Cybersecurity 

Federated learning to 
protect privacy 

Enables secure, 
decentralized data analytics 

6.2. Ethical and Legal Considerations 

Although AI greatly helps detect threats in smart grids, using it raises legal and ethical questions that need to be solved 
before its use becomes responsible and compliant. As AI processes a lot of data, data privacy is very important; to comply 
with CCPA and where it applies, HIPAA, all data should be disguised, protected by security and encrypted. The use of AI 
in decisions must be easily understandable by governments and people working in the field. The addition of XAI modules 
to systems explains complex model outputs using human terms which makes the system more accountable and 
transparent. Also, it’s important to control for bias and model drift; without regular updates and checks, AI models can 
wind up being biased or less useful as grid circumstances develop. Applying both federated and adaptive techniques 
limits these issues by permitting models to be updated locally and prevents them from learning old, irrelevant data. The 
strength of all these measures helps guarantee that the AI used in smart grid cybersecurity supports ethics, 
transparency and conforms to legal rules. 

To ensure trust and auditability, the system incorporates Explainable AI (XAI) modules using SHAP (Shapley Additive 
explanations) and LIME (Local Interpretable Model-agnostic Explanations). For every flagged anomaly, feature 
attributions are computed and presented to SOC analysts via dashboards. This helps operators understand why a 
specific command or telemetry stream was deemed malicious—for instance, highlighting an unusual combination of 
timing intervals and unauthorized port access. 

This interpretability supports regulatory needs, aids in human-in-the-loop oversight, and improves the feedback loop 
for model retraining. In federated setups, explainability outputs are also shared in anonymized form to support 
collaborative learning without leaking raw data. 

6.3. Support for Smart Grid Modernization Goals 

The use of AI in cybersecurity products helps the U.S. DOE’s Grid Modernization Initiative (GMI) in several ways:  

• Early warning of threats helps improve operations.   
• Providing systems that quickly respond to cyber-attacks automatically.  
• Supporting the interconnectedness and efficiency of every type of old and modern utility grid. 

7. Conclusion 

With smart grid technologies now being implemented into the US power system, it is entering a time of major 
transformation. While switching to a digitized, dispersed, and data-based grid is great for efficiency and reduces the 
impact on the environment, it also creates new areas that can be vulnerable compared to old, standalone systems. Over 
recent years, intelligent tools and cloud computing have made the electric grid more complex by adding real-time 
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monitoring, communication in both directions, and analytics to its physical infrastructure. This study evaluates how ML 
and DL can effectively improve cybersecurity for smart grids by spotting, grasping the nature of, and responding to 
various threats.   

Now, cybersecurity in smart grids must handle new types of threat, while also considering the variety found in 
connected devices. Older ways of teaching are necessary starting points, but now school curricula need to evolve. Such 
systems depend greatly on set guidelines and early reactions but have trouble detecting newly found weaknesses, 
threats from within, or sophisticated APT attacks. ML-based and DL-based systems serve as an active and flexible way 
to prevent attacks. With the help of supervised and unsupervised learning, these algorithms process telemetry data 
greatly, spot tardy anomalies, suggest possible ways an attack could happen, and start actions to stop the attack—
usually as it takes place.   

This research illustrates that AI analytics and a scalable infrastructure work well together in the proposed cybersecurity 
framework. Because of cloud-edge computing, the system is responsive where users are while also being able to 
network across a wider area. Such a solution allows for the cooperation of different systems from different eras which 
is valuable for infrastructure that must mix elements from both old and new systems. Moreover, the framework is 
consistent with main industry regulations and cybersecurity rules, including those created by NERC CIP and FERC. 
Taking this regulatory approach helps ensure practical use in several places.   

Robust performance against many cyber threats was observed in simulations, helping to defend the network from 
command injection, data spoofing, and DDoS attacks. These tests demonstrate that intelligent security systems can 
handle the changes made by cyber attackers. AI security defenses do not need to be manually adjusted like rule-based 
ones. They keep learning, adjust themselves, and get updated by sensing and responding to various attacks.   

Besides, employing privacy-friendly and clear technologies in the system helps protect AI from conflicting with ethical 
and legal guidelines. With differential privacy, federated learning, and explainable AI, the system can properly manage 
user privacy, generate trust among everyone involved, and review its decisions. This is particularly important for critical 
infrastructure, as one unintentional problem could interrupt operations or cause people to lose trust.   

Going forward, a reliable nationwide deployment should use a step-by-step method that smoothly connects the idea of 
the system with its actual application. In the beginning, researchers can use small trials in carefully controlled settings, 
aided by major government labs and utility companies, to make sure the models hold true when used in the field. By 
carrying out these pilot projects, the aim is to learn about problems with attachment to vendor-specific systems, 
operating difficulties, and the ability of different national grids to connect smoothly. Achieving these trials will give 
people confidence and a basis for putting the program elsewhere.   

The second step is to focus on scalability testing. The grid in the United States is broad and varied, covering various 
locations, weather types, and ways people use electricity. For this reason, the framework must be effective in multiple 
scenarios, including when latencies change, throughput varies, and hardware is not all the same. A stress test will prove 
that the framework will not fail under peak demand and rough conditions.   

Developing governance structures is just as necessary. Any framework for grid cybersecurity should guarantee that AI 
is ethical, accountable, and easy to see how it operates. It is important that protocols are set for how models learn, 
results are evaluated regularly, decisions are verified, and faulty actions are updated. In addition, these frameworks 
ought to encourage data sharing among utility companies, regions, and the federal government, being careful to protect 
all data, so that all parties can gain from similar cyberattack warning signs.   

Smart adversarial machine learning models are a subject that requires regular monitoring. Because AI is crucial in 
cybersecurity, its systems are also threatened by attacks. Presenting subtle changes to data used by machine learning 
can make these models lose their accuracy and this attack style is increasingly prevalent. The danger of fake cyber 
threats is especially high for smart grids, as a hidden mistake could result in a problem or lead to many false alarms that 
stop the grid from working smoothly. For this reason, future studies ought to strengthen AI models by using strategies 
such as adversarial training, defensive distillation, and validating models to safeguard AI-supported systems against 
these manipulations.   

Getting the national grid fully prepared for cyber-attacks requires actions on technology and on policy, organizations, 
and society. For the energy sector to be suitable, responsive, and in sync, utilities, vendors, regulators, and professionals 
in cybersecurity must cooperate. To boost this change, we require workforce improvements, teamwork between 
companies and governments, and combining efforts with other nations.   



World Journal of Advanced Research and Reviews, 2025, 27(01), 713-726 

725 

Artificial intelligence in cybersecurity also contributes valuable opportunities for both better defense and industry-wide 
innovation in the energy sector. With the fundamental infrastructure safe, more people can benefit from advanced smart 
grid features, like demand-side management, adjustable pricing, and renewable energy integration. Creating a reliable 
grid, cutting down carbon emissions, and planning for the future matter because of these developments. In this instance, 
cybersecurity does more than keep energy systems safe; it contributes to reaching national energy goals.   

Overall, this research supports the need to use AI within the security systems of the smart grid. Because they quickly 
detect risks, respond promptly, and continue to adapt, AI-based systems are a leading approach to handling complex 
safety issues in today’s energy industry. Using cloud-edge integration, compliance with regulations, and transparent use 
of AI can guide the creation of secure and smart energy infrastructure. Moving forward, how much the nation invests in 
testing, scaling, and governing smart grid systems will decide how securely the grid is defended and how much is gained 
from its modernization.   

Significant risks are involved. Because national and economic stability, as well as millions of people’s welfare, depend 
on energy, now is when cybersecurity matters the most. With AI, not only does the technology change but there’s also a 
shift in how the grid deals with risks—now being aware, adaptive, and strong. More developments and uses of these 
technologies will play an important role in keeping the U.S. electric grid secure, dependable, and updated. 
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