

Artificial Intelligence in transforming maintenance and repair of armored vehicles

Mohammad Saidur Rahman *

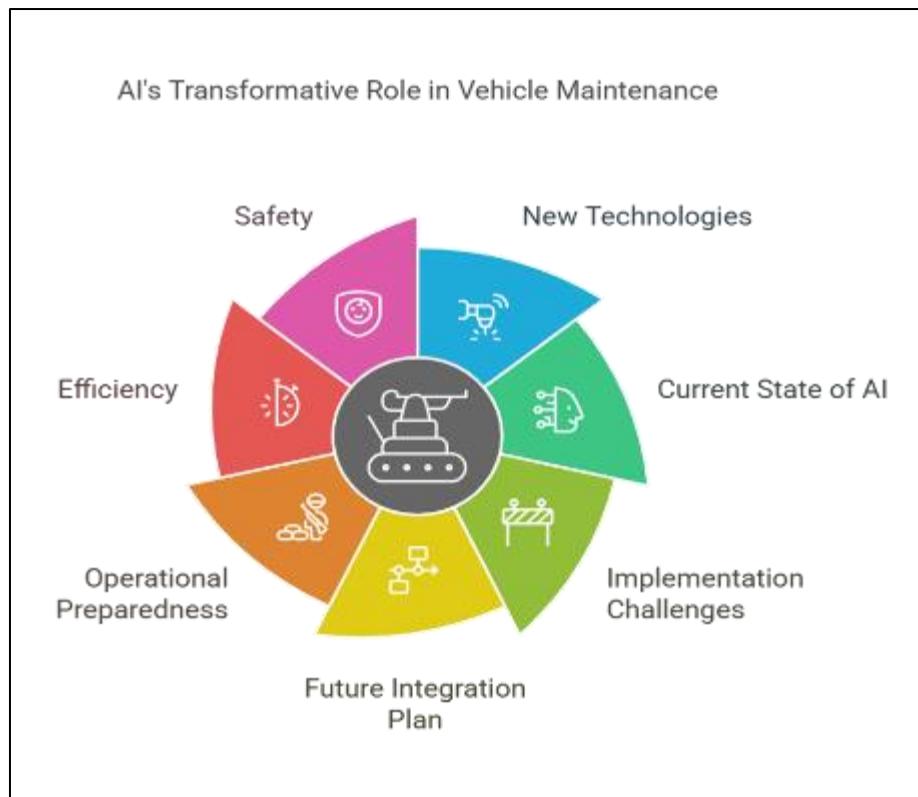
Bangladesh Army, Ghatail Cantonment, 1980, Bangladesh.

World Journal of Advanced Research and Reviews, 2025, 27(01), 1692-1710

Publication history: Received on 07 June 2025; revised on 13 July 2025; accepted on 16 July 2025

Article DOI: <https://doi.org/10.30574/wjarr.2025.27.1.2506>

Abstract


This analysis examines how artificial intelligence (AI) revolutionises armoured vehicle repair and Maintenance (M&R). It discusses emerging technologies, the current status of artificial intelligence (AI), and how these could enhance defence capabilities. The paper provides a comprehensive plan for potential integration and examines implementation issues. This paper aims to show AI's significant benefits in the defence sector by resolving these issues. With the correct funding, research, and collaborations, artificial intelligence (AI) can change M&R practices, enhancing operational readiness, effectiveness, and safety.

Keywords: Artificial Intelligence (AI); Armored Vehicles; Maintenance and Repair (M&R); Predictive Maintenance; Augmented Reality (AR); Virtual Reality (VR).

1. Introduction

Armoured vehicles are crucial for human safety and mission success in defence operations [1]. These vehicles constantly wear and tear due to the severe circumstances in which we operate [2-4]. Conventional maintenance and repair (M&R) systems often cannot meet these expectations, leading to inefficiencies, delays, and costly costs [5-9]. More clever and useful solutions have been needed [10-11]. Artificial intelligence (AI) offers a new way forward with automated prediction capabilities [12-16]. This study looks at the current state of affairs, recent advancements, and possible futures for M&R for AI-related armoured vehicles. Figure 1 shows how AI affects armoured vehicle M&R.

* Corresponding author: Mohammad Saidur Rahman

Figure 1 Illustrates AI's Impact on Armored Vehicle M&R.

2. Current State of AI in Maintenance and Repair

2.1. Overview of AI Applications

By offering faster, more accurate, and less resource-intensive solutions, artificial intelligence has completely transformed M&R systems [17–20]. By using data to predict probable failures, predictive Maintenance allows for proactive measures to prevent malfunctions [21–23]. By precisely identifying faults, autonomous diagnostic systems lessen the need for human expertise [24–25]. Furthermore, supply chain optimisation powered by AI guarantees the availability of required spare parts, expediting maintenance procedures [26–29]. The effectiveness of M&R activities is increased by these applications taken together [30–31]. Around the world, military sectors are rapidly integrating these AI systems [32–33].

Table 1 An Overview of AI Applications in Maintenance and Repair.

Aspect	Description	References
Predictive Maintenance	Utilises data to forecast potential failures, enabling preemptive actions to avoid breakdowns.	[163-164]
Autonomous Diagnostics	Reduces reliance on human expertise by providing precise fault identification.	[165]
Supply Chain Optimisation	Ensures availability of necessary spare parts, streamlining repair processes.	[166-167]
Efficiency Improvement	Collectively improves M&R operations through faster and more accurate solutions.	[168]

2.2. Technologies Used

Machine learning techniques that evaluate real-time and historical data can be used to predict maintenance needs [45–46] correctly. Computer vision systems can use high-resolution photos to identify cracks and wear [47]. Through

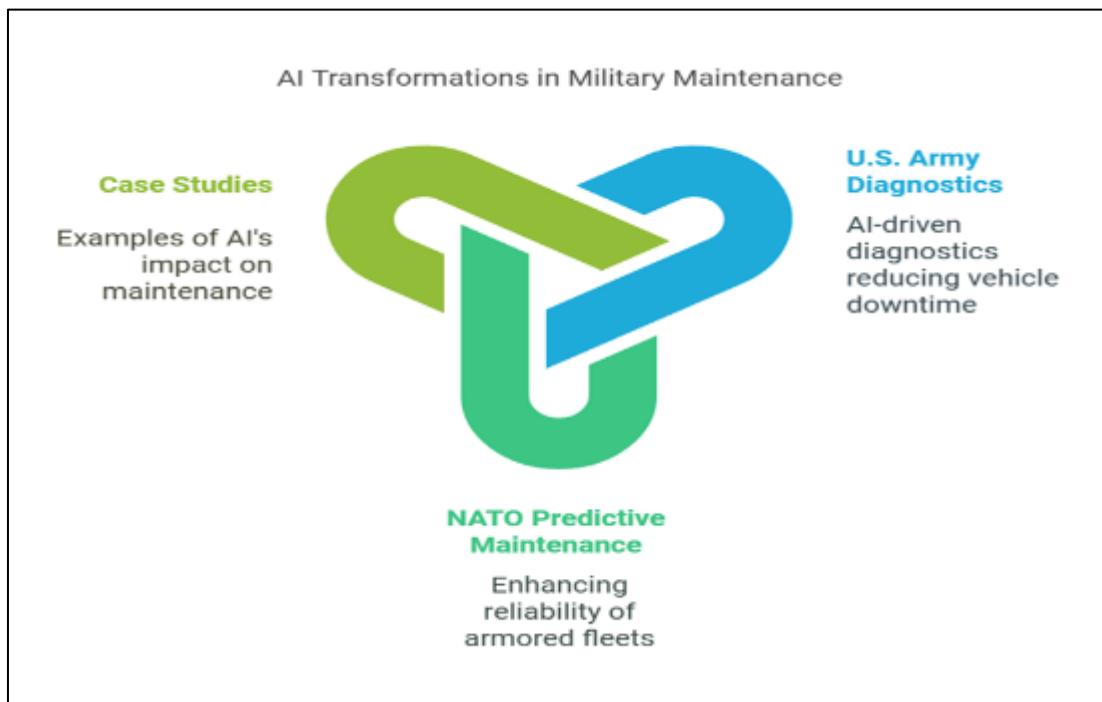

constant data collection on the vehicle's performance, Internet of Things (IoT) sensors offer a comprehensive view of operational health [48-49]. These technologies work together synergistically to create a strong system to track and repair [50-53]. Their use dramatically improves accuracy and decreases room for human mistakes during Maintenance [54-56].

Table 2 Technologies Used in AI-Driven M&R.

Technology	Function	References
Machine Learning	Analyses historical and real-time data for accurate maintenance predictions.	[169]
Computer Vision	Identifies visible damage (e.g., cracks, wear) from high-resolution images.	[170]
IoT-Enabled Sensors	Provides continuous data on vehicle performance for comprehensive operational health monitoring.	[171]

2.3. Case Studies/Examples

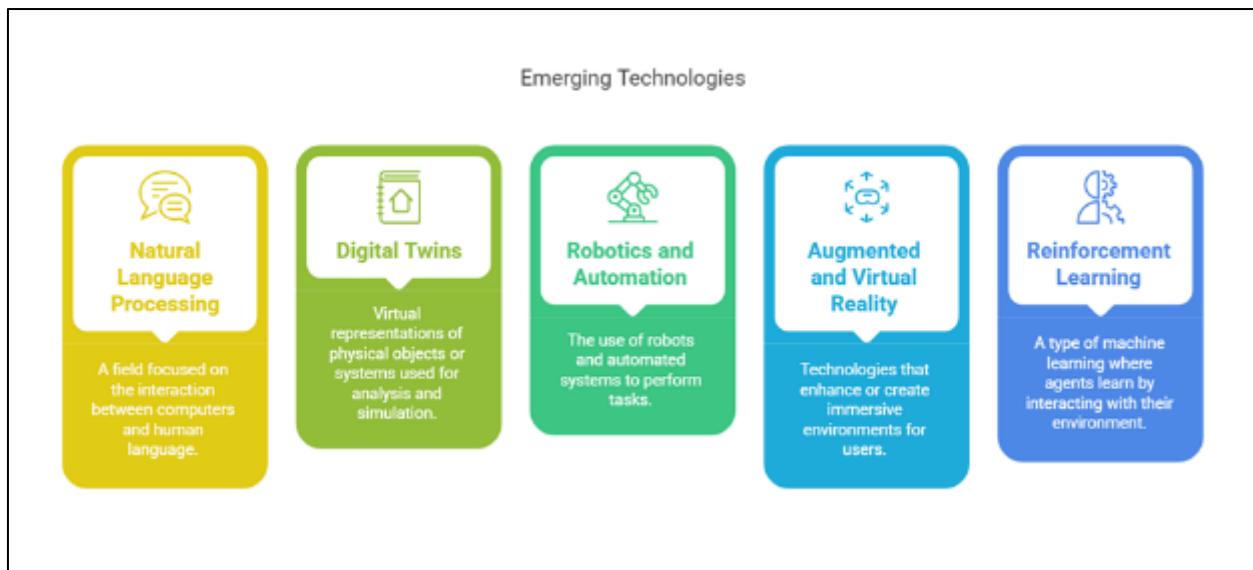

Incorporating AI into their M&R procedures is a growing trend across military organisations worldwide [57-59]. For example, the United States Army has used diagnostics powered by artificial intelligence, which has decreased vehicle downtime [60-61]. In Europe, NATO troops employ predictive Maintenance to boost the dependability of their armed vehicles [62-64]. Case studies indicate how AI-powered machines identify potential difficulties faster than conventional approaches [65]. These examples show the concrete benefits of incorporating AI into M&R processes. The efficacy of these programs underlines AI's potential to change military vehicle upkeep [66-68]. **Figure 2** provides a summary of Case Studies/Examples in M&R.

Figure 2 Illustrates Triadic Diagram of AI Transformations in Military Maintenance

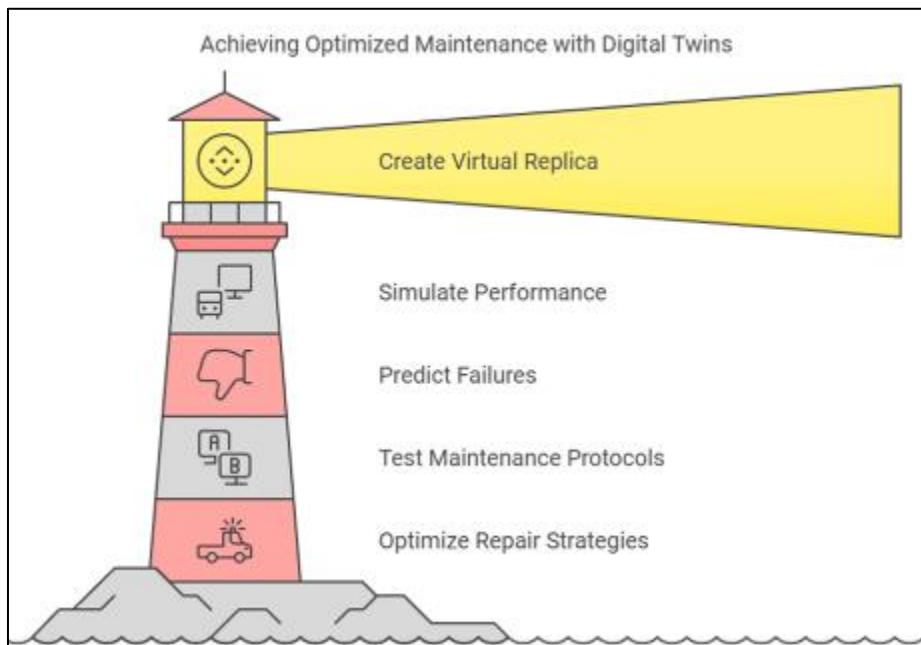
3. Emerging AI Technologies

Figure 3 Demonstrates different aspects of emerging AI technology.

Figure 3 Overview of Emerging AI Technologies in Maintenance and Repair

Table 3 Emerging AI Technologies and Their Applications.

Technology	Application	References
Natural Language Processing (NLP)	AI-powered manuals and interactive assistants simplify repair tasks.	[172]
Digital Twins	Virtual replicas simulate performance and predict failures for optimised Maintenance.	[173]
Robotics and Automation	Robots perform intricate tasks; drones inspect vehicles and report real-time damage.	[174-175]
AR/VR	Enhances training and operational support with immersive solutions and step-by-step overlays.	[176-177]
Reinforcement Learning	Dynamically adapts repair strategies to evolving operational conditions.	[178]


3.1. Natural Language Processing (NLP)

NLP plays a pivotal role in streamlining M&R workflows [69]. AI-powered maintenance manuals provide technicians with instant, accurate repair instructions [70]. Interactive troubleshooting assistants leverage NLP to understand and respond to queries, simplifying complex repair tasks [71]. These systems ensure that even non-expert technicians can perform Maintenance efficiently [72]. By reducing reliance on extensive training, NLP enhances the overall adaptability of repair crews [73-74]. As NLP technologies evolve, their applications in military M&R will expand further [75-77]. **Figure 4** Shows Natural Language Processing (NLP) in M&R.

Figure 4 Roadmap of NLP in Military Maintenance and Repair

3.2. Digital Twins

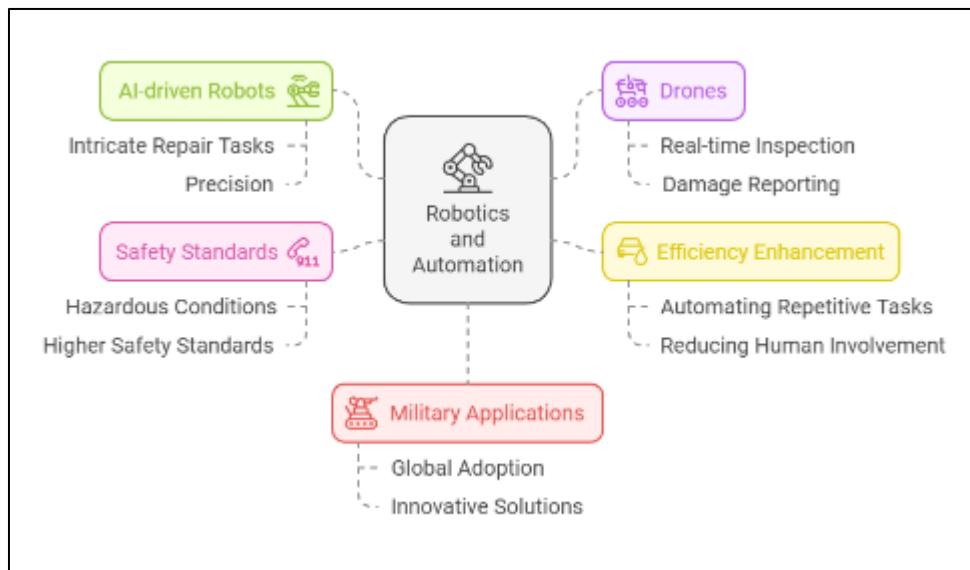
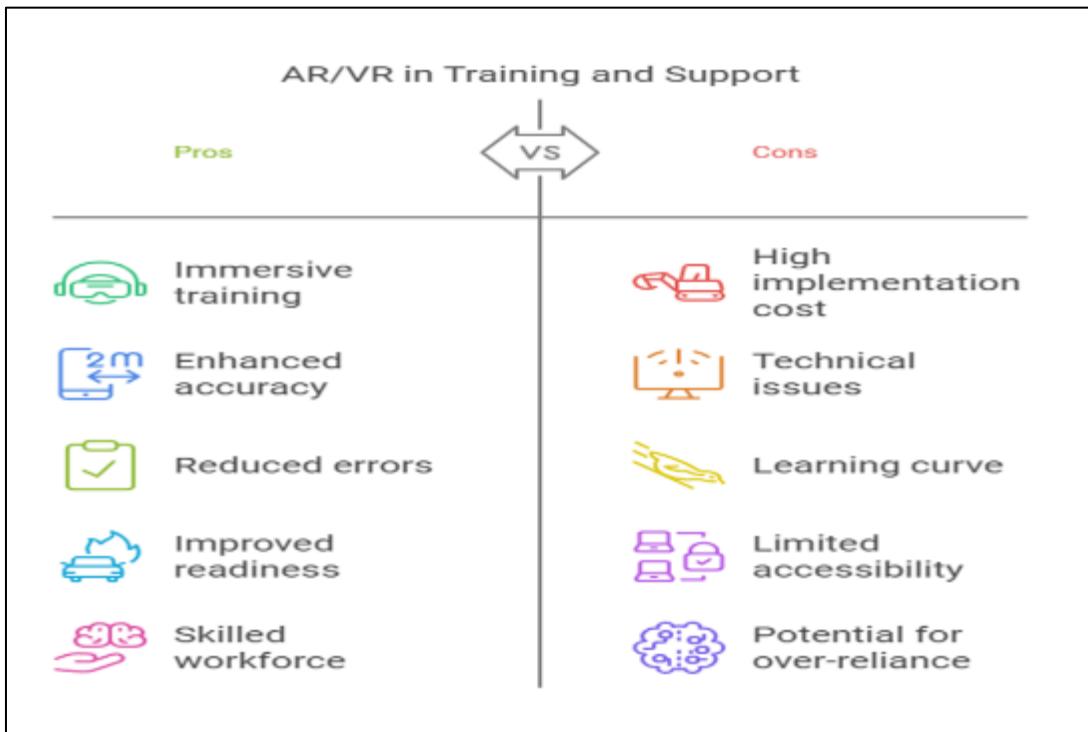


Figure 5 Lighthouse Diagram for Achieving Optimised Maintenance with Digital Twins

Digital twin technology creates virtual replicas of armoured vehicles, simulating their real-time performance [78-80]. These simulations enable the prediction of failures and allow for the virtual testing of maintenance protocols [81-82]. By identifying issues before they occur, digital twins reduce downtime and repair costs [83]. This technology optimises repair strategies through continuous data analysis [84-85]. Integrating digital twins into M&R systems represents a significant leap forward in predictive and preventive Maintenance [86]. Figure 5 Shows digital twins in AI-driven M&R.


3.3. Robotics and Automation

Robotics and automation are redefining the repair landscape [87-88]. AI-driven robots perform intricate repair tasks with unparalleled precision, reducing human involvement in hazardous conditions [89-92]. Drones equipped with AI inspect vehicle exteriors for damage, providing detailed reports in real-time [93-96]. These innovations significantly enhance the efficiency of the repair process [97]. By automating repetitive and dangerous tasks, robotics ensure higher safety standards for technicians [98]. This technology is rapidly gaining traction in military applications worldwide [99-100]. **Figure 6** Shows Robotics and Automation in AI-driven M&R.

Figure 6 Mind Map of Robotics and Automation Applications

3.4. Augmented and Virtual Reality (AR/VR)

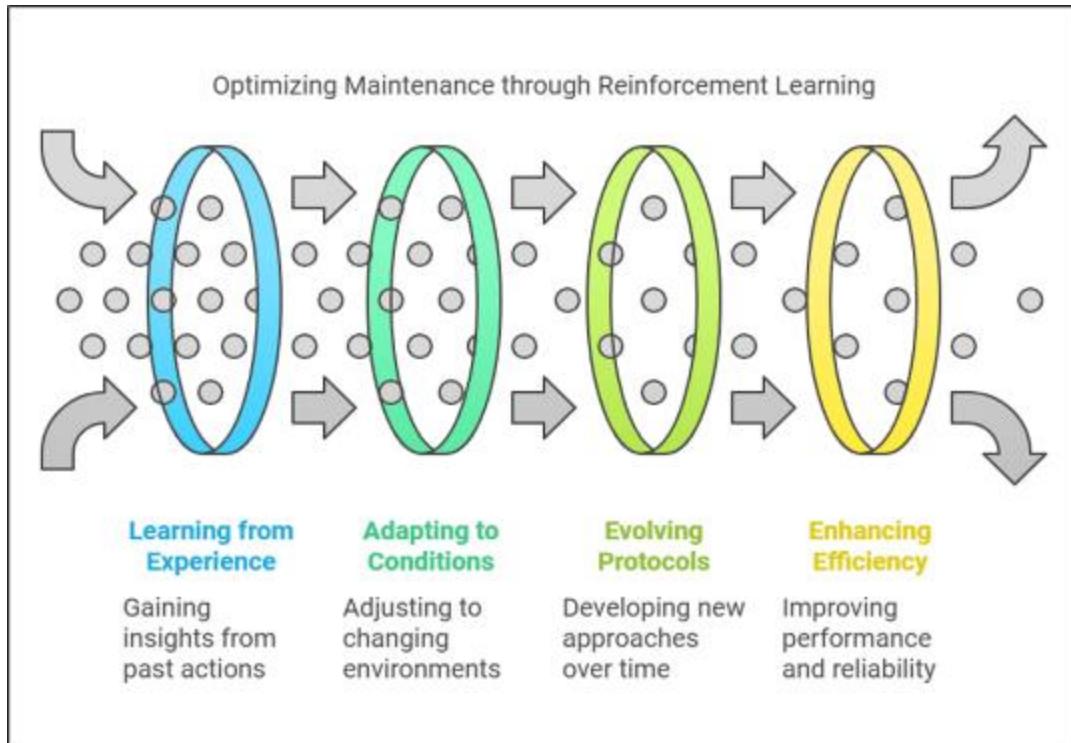


Figure 7 A graphical abstract of the Pros and Cons Table of AR/VR in Training and Support

AR/VR technologies provide immersive solutions for training and operational support [101]. AI-powered AR overlays guide technicians through repair procedures step by step, enhancing accuracy and reducing errors [102-103]. VR-based training programs prepare repair crews for real-world scenarios, improving their readiness and efficiency [104-105]. These technologies bridge the gap between theoretical knowledge and practical application [106-107]. Incorporating AR/VR into M&R systems fosters a more skilled and capable workforce [108-109]. Their role in enhancing operational efficiency is undeniable [110-111]. **Figure 7** shows Augmented and Virtual Reality (AR/VR) in AI-based M&R.

3.5. Reinforcement Learning

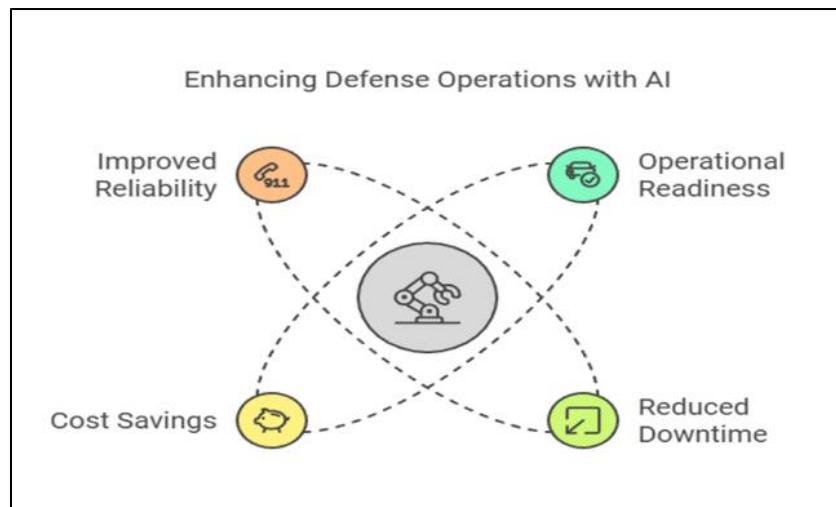

Reinforcement learning enables AI systems to adapt and optimise repair strategies [112-113]. These systems learn from past experiences to develop more effective approaches to maintenance [114]. Reinforcement learning ensures that repair protocols evolve alongside changing operational conditions [115-116]. By continuously improving their performance, these AI systems enhance the reliability and efficiency of M&R processes [117-118]. Their application in military contexts is expected to grow significantly in the coming years [119-120]. **Figure 8** shows Reinforcement Learning in M&R.

Figure 8 Process Flow Diagram for Optimising Maintenance with Reinforcement Learning

4. Impact on Defense Operations

The integration of AI in M&R systems has a profound impact on defence operations [121]. Enhanced operational readiness is one of the most significant benefits, ensuring vehicles are always mission-ready [122]. AI-driven maintenance schedules reduce downtime, allowing fleets to remain in service longer [123-124]. Cost savings are another crucial advantage, with optimised processes reducing unnecessary expenses [125]. Additionally, the improved reliability of vehicles enhances safety for personnel [126]. These benefits collectively strengthen the operational capabilities of defence forces. **Table 4** shows the benefits of AI Integration in Defense Operations.

Figure 9 Enhancing Defence Operations with AI

Table 4 Benefits of AI Integration in Defense Operations.

Benefit	Description	References
Operational Readiness	Ensures vehicles are mission-ready at all times by reducing downtime.	[127]
Cost Savings	Optimised maintenance processes lead to reduced expenses.	[128]
Improved Reliability	Enhances safety for personnel by ensuring higher reliability of vehicles.	[129]
Safety Enhancements	Reduces risk to technicians through automation of hazardous tasks.	[130]

5. Challenges and Limitations

The implementation of AI systems faces several technical challenges [131]. Data quality and availability are critical concerns, as accurate predictions require comprehensive datasets [132]. Legacy systems often lack compatibility with modern AI technologies, complicating integration efforts [133]. Addressing these barriers requires substantial investment in infrastructure and training. Despite these challenges, ongoing advancements in AI are gradually overcoming technical limitations. However, further research and development are necessary to ensure seamless integration. AI in military applications raises significant ethical and security concerns [134]. Data privacy is a major issue, as sensitive information must be safeguarded against breaches [135]. Cybersecurity risks threaten the integrity of AI systems, potentially leading to catastrophic failures [136-137]. Additionally, accountability in autonomous systems remains an unresolved ethical dilemma. Addressing these concerns is crucial to the responsible adoption of AI in defence applications [138-139]. Robust policies and safeguards must accompany technological advancements [140-141]. High implementation and training costs present economic challenges for AI adoption in M&R systems [142]. Developing and maintaining AI-driven solutions requires substantial financial resources [143]. Many defence budgets are already constrained, limiting the scope of such investments [144]. However, the long-term cost savings offered by AI systems could offset these initial expenses. Strategic planning and resource allocation are essential to overcoming these economic barriers.

6. Future Roadmap

The immediate focus should be on pilot programs for AI in predictive maintenance [145]. These initiatives will demonstrate the feasibility and benefits of AI-driven solutions. Developing training modules for technicians to use AI systems effectively is another critical step [146]. These short-term goals lay the foundation for broader AI adoption in the defence sector. In the mid-term, scaling AI integration across vehicle fleets will become a priority [147]. Standardising protocols for AI-driven M&R systems ensures consistency and reliability [148]. These efforts will solidify AI's role in enhancing maintenance efficiency and operational readiness [149]. The long-term vision includes

developing fully autonomous maintenance systems [150]. Self-repairing armoured vehicles represent the pinnacle of AI-driven innovation in M&R [151]. Achieving these goals will require sustained research, funding, and collaboration [152-153]. Partnerships between military organisations, AI firms, and academic institutions will drive innovation [154-156]. These collaborations ensure access to cutting-edge technologies and expertise [157]. By pooling resources and knowledge, stakeholders can accelerate the adoption of AI-driven solutions [158].

Highlights

- **Integration of Advanced AI Technologies:** This paper examines using several AI technologies, such as computer vision, machine learning, IoT sensors, and predictive Maintenance, in the defence sector to optimise maintenance and repair processes.
- **Emerging AI Solutions in M&R:** This paper investigates the potential of technologies such as natural language processing (NLP), digital twins, robotics, augmented reality (AR/VR), and reinforcement learning to transform maintenance and repair procedures.
- **Impact on Defense Operations:** The study highlights how artificial intelligence (AI) improves operational preparedness, lowers downtime, increases reliability, and helps armed personnel save money and stay safer.

Abbreviations

- AI: Artificial Intelligence
- M&R: Maintenance and Repair
- IoT: Internet of Things
- NLP: Natural Language Processing
- AR: Augmented Reality
- VR: Virtual Reality
- ML: Machine Learning
- NATO: North Atlantic Treaty Organization
- R&D: Research and Development
- COTS: Commercial Off-The-Shelf
- MRO: Maintenance, Repair, and Overhaul
- DoD: Department of Defense

7. Conclusion

There has been much discussed about the revolutionary impact of Artificial Intelligence on armoured vehicle maintenance and repair (M&R). Hence, a lot of research is done in order to resolve these limitations in the present era of technology. Regarding the revolutionary impact of AI assistance to armoured vehicle maintenance and repair (M&R) it is worth noting that:

- AI capable of transforming the M&R systems of armoured vehicle by providing unmatched efficiency and reliability
- There are various technical, financial, security and ethical challenges to utilize AI in M&R systems yet advantages of AI-based solutions are seen to be significantly larger than the disadvantages.
- The defence sector must address these technical, ethical, and economic barriers to unlock the transformative potential of AI.
- This will require ongoing research, investment, and partnerships to accomplish.
- Article provides insights into future course of AI in M&R, Idea for autonomous maintenance system, Scalable integration and implementation, and pilot programs.

References

- [1] Fraga-Lamas, P., Fernández-Caramés, T., Suárez-Albelá, M., Castedo, L., & González-López, M. (2016). A review on the Internet of Things for Defense and Public Safety. *Sensors*, 16(10), 1644. <https://doi.org/10.3390/s16101644>
- [2] Revaiah, R. G., Kotresh, T. M., & Kandasubramanian, B. (2019). Technical textiles for military applications. *Journal of the Textile Institute*, 111(2), 273–308. <https://doi.org/10.1080/00405000.2019.1627987>

- [3] Yadav, R., Naebe, M., Wang, X., & Kandasubramanian, B. (2016). Body armour materials: from steel to contemporary biomimetic systems. *RSC Advances*, 6(116), 115145–115174. <https://doi.org/10.1039/c6ra24016j>
- [4] Crouch, I., Cimpoeru, S., Li, H., & Shanmugam, D. (2016). Armour steels. In Elsevier eBooks (pp. 55–115). <https://doi.org/10.1016/b978-0-08-100704-4.00002-5>
- [5] Crouch, I., Cimpoeru, S., Li, H., & Shanmugam, D. (2016). Armour steels. In Elsevier eBooks (pp. 55–115). <https://doi.org/10.1016/b978-0-08-100704-4.00002-5>
- [6] Scranton, P. (2021). Fixing holes in the Plan: Maintenance and repair in Poland, 1945–1970. *Entreprises Et Histoire*, n° 103(2), 54–72. <https://doi.org/10.3917/eh.103.0054>
- [7] Mahr, T. (n.d.). Current and future challenges in the independent automotive repair industry: a case study - ProQuest. <https://www.proquest.com/openview/ceccb965ec920a1c291f5d2b32afc039/1?pq-origsite=gscholar&cbl=2026366&diss=y>
- [8] Rattanakunuprakarn, S. (n.d.). Application of reliability-centred Maintenance in railway tracks. STARS. <https://stars.library.ucf.edu/etd2020/401/>
- [9] Mills, P., Mane, M., Kuhn, K., Narayanan, A., Powers, J. D., Buryk, P., ... & Lynch, K. F. (2017). Articulating the Effects of Infrastructure Resourcing on Air Force Missions. (RR1578).
- [10] Broggi, A., Zelinsky, A., Özgüler, Ü., & Laugier, C. (2016). Intelligent vehicles. In Springer handbooks (pp. 1627–1656). https://doi.org/10.1007/978-3-319-32552-1_62
- [11] Military-Based Vehicle-to-Grid and Vehicle-to-Vehicle Microgrid—System Architecture and Implementation. (n.d.). IEEE Journals & Magazine | IEEE Xplore. <https://ieeexplore.ieee.org/abstract/document/8125782>
- [12] Layton, P. (2021). Fighting Artificial Intelligence Battles: Operational Concepts for Future AI-Enabled Wars. *Network*, 4(20), 1–100.
- [13] Rashid, A. B., Kausik, A. K., Sunny, A. a. H., & Bappy, M. H. (2023). Artificial intelligence in the military: An overview of the capabilities, applications, and challenges. *International Journal of Intelligent Systems*, 2023, 1–31. <https://doi.org/10.1155/2023/8676366>
- [14] Raska, M., & Bitzinger, R. A. (Eds.). (2023). *The AI Wave in Defence Innovation: Assessing Military Artificial Intelligence Strategies, Capabilities, and Trajectories*. Taylor & Francis.
- [15] Kania, E. B. (2022). Chinese military innovation in artificial intelligence. Centre for a New American Security.
- [16] Mori, S. (2018). US Defense Innovation and Artificial Intelligence. *Asia-Pacific Review*, 25(2), 16–44. <https://doi.org/10.1080/13439006.2018.1545488>
- [17] Lehto, M., Technology, F. O. I., Tiedekunta, I., Yliopisto, J., Analysis, S. a. S., & Analyysi, T. J. S. (2024). Strategic overview of applying artificial intelligence on the future battlefield. <https://jyx.jyu.fi/handle/123456789/95024>
- [18] AI has become a game-changer in Maintenance and repair. . . . - Google Scholar. (n.d.). https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&as_ylo=2015&as_yhi=2025&q=AI+has+become+a+game-changer+in+Maintenance+%26+Repair+systems%2C+offering+solutions+that+are+more+accurate%2C+and+less+resource-intensive+in+armor+vehicle&btnG=
- [19] Georgiev, S., Polychronakis, Y., Sapountzis, S., & Polychronakis, N. (2024). The role of artificial intelligence in project management: a supply chain perspective. *Supply Chain Forum an International Journal*, 1–14. <https://doi.org/10.1080/16258312.2024.2384823>
- [20] Qvist-Sørensen, P. (2020). Applying IIOT and AI – Opportunities, requirements and challenges for industrial machine and equipment manufacturers to expand their services. Questa Soft. <https://www.ceeol.com/search/article-detail?id=881345>
- [21] Achouch, M., Dimitrova, M., Ziane, K., Karganroudi, S. S., Dhouib, R., Ibrahim, H., & Adda, M. (2022). On Predictive Maintenance in Industry 4.0: Overview, models, and challenges. *Applied Sciences*, 12(16), 8081. <https://doi.org/10.3390/app12168081>
- [22] Boppana, V. R. (2023). Data Analytics for Predictive Maintenance in Healthcare Equipment. *EPH-International Journal of Business & Management Science*, 9(2), 26–36. <https://doi.org/10.53555/ejbms.v10i1.176>

- [23] Selcuk, S. (2016). Predictive Maintenance, its implementation and latest trends. *Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture*, 231(9), 1670–1679. <https://doi.org/10.1177/0954405415601640>
- [24] Eddy, C. W. (n.d.). Digital twin in military ground vehicles: design and predictive Maintenance - ProQuest. <https://www.proquest.com/openview/003c07e366519c226a5560a0bc110416/1?pq-origsite=gscholar&cbl=18750&diss=y>
- [25] Selcuk, S. (2016). Predictive Maintenance, its implementation and latest trends. *Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture*, 231(9), 1670–1679. <https://doi.org/10.1177/0954405415601640>
- [26] Selcuk, S. (2016). Predictive Maintenance, its implementation and latest trends. *Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture*, 231(9), 1670–1679. <https://doi.org/10.1177/0954405415601640>
- [27] Abdullah, M., Rahnama, R., Radu, A., Stewart, K., & Buchan, G. (2024, November). Leveraging Artificial Intelligence for Prioritising and Streamlining Maintenance Backlogs. In *Abu Dhabi International Petroleum Exhibition and Conference* (p. D021S046R004). SPE. <https://doi.org/10.2118/222181-MS>
- [28] Jambol, N. D. D., Sofoluwe, N. O. O., Ukato, N. A., & Ochulor, N. O. J. (2024). Transforming equipment management in oil and gas with AI-driven predictive maintenance. *Computer Science & IT Research Journal*, 5(5), 1090–1112. <https://doi.org/10.51594/csitrj.v5i5.1117>
- [29] Shobhana, N. (2024). AI-powered supply chains towards greater efficiency. In *Advances in Logistics, operations, and Management Science* book series (pp. 229–249). <https://doi.org/10.4018/979-8-3693-0712-0.ch011>
- [30] Foresti, R., Rossi, S., Magnani, M., Lo Bianco, C. G., & Delmonte, N. (2020). Smart Society and Artificial intelligence: big data scheduling and the global standard method applied to smart Maintenance. *Engineering*, 6(7), 835–846. <https://doi.org/10.1016/j.eng.2019.11.014>
- [31] Artificial-Intelligence-Driven Customized Manufacturing Factory: key technologies, applications, and challenges. (n.d.). IEEE Journals & Magazine | IEEE Xplore. <https://ieeexplore.ieee.org/abstract/document/9266587>
- [32] Morgan, F. E., Boudreaux, B., Lohn, A. J., Ashby, M., Curriden, C., Klima, K., & Grossman, D. (2020). Military applications of artificial intelligence. Santa Monica: RAND Corporation.
- [33] Bistron, M., & Piotrowski, Z. (2021). Artificial intelligence applications in military systems and their influence on citizens' sense of security. *Electronics*, 10(7), 871. <https://doi.org/10.3390/electronics10070871>
- [34] Aerospace Predictive maintenance. (n.d.). Google Books. https://books.google.com.bd/books?hl=en&lr=&id=HuObEAAAQBAJ&oi=fnd&pg=PP1&dq=Predictive+Maintenance,+Utilizes+data+to+forecast+potential+failures+in+military&ots=yXtIw4y5VI&sig=ZB_k2YqJaEZfD7b8J29NabPDROc&redir_esc=y#v=onepage&q&f=false
- [35] Choi, B., & Suh, J. H. (2020). Forecasting Spare Parts Demand of Military Aircraft: Comparisons of Data Mining Techniques and Managerial Features from the Case of South Korea. *Sustainability*, 12(15), 6045. <https://doi.org/10.3390/su12156045>
- [36] Boppana, V. R. (2023). Data Analytics for Predictive Maintenance in Healthcare Equipment. *EPH-International Journal of Business & Management Science*, 9(2), 26-36. <https://doi.org/10.53555/eijbms.v10i1.176>
- [37] Precup, R., Angelov, P., Costa, B. S. J., & Sayed-Mouchaweh, M. (2015). An overview of fault diagnosis and nature-inspired optimal control of industrial process applications. *Computers in Industry*, 74, 75–94. <https://doi.org/10.1016/j.compind.2015.03.001>
- [38] Ivanova, K., Gallasch, G. E., & Jordans, J. (2016). Automated and autonomous systems for combat service support: scoping study and technology prioritisation. *Defence Science and Technology Group Edinburgh SA Australia*.
- [39] Oniani, D., Hilsman, J., Peng, Y., Col, P., R. K., P., C. J. C., L., L. G. L., & Wang, Y. (2023, August 4). From military to Healthcare: Adopting and expanding ethical principles for Generative Artificial intelligence. arXiv.org. <https://arxiv.org/abs/2308.02448>
- [40] Sharma, P., Kulkarni, M. S., & Yadav, V. (2017). A simulation-based optimisation approach for spare parts forecasting and selective Maintenance. *Reliability Engineering & System Safety*, 168, 274–289. <https://doi.org/10.1016/j.ress.2017.05.013>

- [41] Boer, J. D., Lambrechts, W., & Krikke, H. (2020). Additive manufacturing in military and humanitarian missions: Advantages and challenges in the spare parts supply chain. *Journal of Cleaner Production*, 257, 120301. <https://doi.org/10.1016/j.jclepro.2020.120301>
- [42] Tsadikovich, D., Levner, E., Tell, H., & Werner, F. (2016). Integrated demand-responsive scheduling of maintenance and transportation operations in military supply chains. *International Journal of Production Research*, 54(19), 5798–5810. <https://doi.org/10.1080/00207543.2016.1178864>
- [43] Synovec, T. M., Howard, I. L., & Priddy, L. P. (2022). Thirty-Year Airfield Pavement Behavioral and Economic Simulation to improve budget allocation for the US Air Force Network. *Journal of Infrastructure Systems*, 29(1). [https://doi.org/10.1061/\(asce\)is.1943-555x.0000727](https://doi.org/10.1061/(asce)is.1943-555x.0000727)
- [44] Barua, L., & Zou, B. (2021). Planning maintenance and rehabilitation activities for airport pavements: A combined supervised machine learning and reinforcement learning approach. *International Journal of Transportation Science and Technology*, 11(2), 423–435. <https://doi.org/10.1016/j.ijtst.2021.05.006>
- [45] Ayvaz, S., & Alpay, K. (2021). Predictive maintenance system for production lines in manufacturing: A machine learning approach using IoT data in real-time. *Expert Systems With Applications*, 173, 114598. <https://doi.org/10.1016/j.eswa.2021.114598>
- [46] Cakir, M., Guvenc, M. A., & Mistikoglu, S. (2020). The experimental application of popular machine learning algorithms on predictive Maintenance and the IIoT-based condition monitoring system design. *Computers & Industrial Engineering*, 151, 106948. <https://doi.org/10.1016/j.cie.2020.106948>
- [47] Koch, C., Georgieva, K., Kasireddy, V., Akinci, B., & Fieguth, P. (2015). A review of computer vision-based defect detection and condition assessment of concrete and asphalt civil infrastructure. *Advanced Engineering Informatics*, 29(2), 196–210. <https://doi.org/10.1016/j.aei.2015.01.008>
- [48] IoT-Enabled smart military training for virtual simulation and Real-Time performance analysis. (n.d.). IEEE Conference Publication | IEEE Xplore. <https://ieeexplore.ieee.org/abstract/document/10533460>
- [49] Ranjan, R., Ch, B., & Sahana, R. (2024, June 17). A Comprehensive Roadmap for Transforming Healthcare from Hospital-Centric to Patient-Centric Through Healthcare Internet of Things (IoT). <https://www.esppublisher.com/journals/articledetails/1175>
- [50] Ogunfowora, O., & Najjaran, H. (2023). Reinforcement and deep reinforcement learning-based solutions for machine maintenance planning, scheduling policies, and optimisation. *Journal of Manufacturing Systems*, 70, 244–263. <https://doi.org/10.1016/j.jmsy.2023.07.014>
- [51] Kalusivalingam, A. K., Sharma, A., Patel, N., & Singh, V. (2020, April 14). Enhancing predictive Maintenance in manufacturing using machine learning algorithms and IoT-driven data analytics. <https://cognitivecomputingjournal.com/index.php/IJAIML-V1/article/view/50>
- [52] Gohel, H. A., Upadhyay, H., Lagos, L., Cooper, K., & Sanzetenea, A. (2020). Predictive maintenance architecture development for nuclear infrastructure using machine learning. *Nuclear Engineering and Technology*, 52(7), 1436–1442. <https://doi.org/10.1016/j.net.2019.12.029>
- [53] Iyer, B., & Patil, N. (2018). IoT-enabled tracking and monitoring sensors for military applications. *International Journal of Systems Assurance Engineering and Management*, 9(6), 1294–1301. <https://doi.org/10.1007/s13198-018-0727-8>
- [54] Liu, C., Zhu, H., Tang, D., Nie, Q., Zhou, T., Wang, L., & Song, Y. (2022). Probing an intelligent predictive maintenance approach with deep learning and augmented reality for machine tools in IoT-enabled manufacturing. *Robotics and Computer-Integrated Manufacturing*, 77, 102357. <https://doi.org/10.1016/j.rcim.2022.102357>
- [55] Angelopoulos, A., Michailidis, E. T., Nomikos, N., Trakadas, P., Hatziefremidis, A., Voliotis, S., & Zahariadis, T. (2019). Tackling Faults in the Industry 4.0 Era—A survey of Machine-Learning Solutions and Key aspects. *Sensors*, 20(1), 109. <https://doi.org/10.3390/s20010109>
- [56] Anjum, K. N., & Luz, A. (2024). Investigating the Role of Internet of Things (IoT) Sensors in Enhancing Construction Site Safety and Efficiency. *International Journal of Advances in Engineering and Management*, 6(463), 10-35629. https://www.researchgate.net/profile/Kazi-Nafisa-Anjum/publication/387559816_Investigating_the_Role_of_Internet_of_Things_IoT_Sensors_in_Enhancing_Construction_Site_Safety_and_Efficiency/links/677418d8c1b01354650688c5/Investigating-the-Role-of-Internet-of-Things-IoT-Sensors-in-Enhancing-Construction-Site-Safety-and-Efficiency.pdf

- [57] Geist, E. M. (2016). It is already too late to stop the AI arms race—We must manage it instead. *Bulletin of the Atomic Scientists*, 72(5), 318–321. <https://doi.org/10.1080/00963402.2016.1216672>
- [58] Scaife, A. D. (2023). Improve predictive Maintenance through the application of artificial intelligence: A systematic review. *Results in Engineering*, 21, 101645. <https://doi.org/10.1016/j.rineng.2023.101645>
- [59] Yuldashev, N., Tursunov, B., & Qozoqov, S. (2018). Use of artificial intelligence methods in operational planning of textile production. *Journal of Process Management New Technologies*, 6(2), 41–51. <https://doi.org/10.5937/jouproman6-17221>
- [60] Merlo, T. R. (2024). The emerging role of Artificial intelligence (AI) in aviation. In *Advances in mechatronics and mechanical engineering (AMME)* book series (pp. 28–46). <https://doi.org/10.4018/979-8-3693-0732-8.ch002>
- [61] An Overview of Artificial Intelligence-Based Techniques for PEMFC System Diagnosis. (n.d.). IEEE Journals & Magazine | IEEE Xplore. <https://ieeexplore.ieee.org/abstract/document/10746479>
- [62] Özkil, A. Role of Operations Research and Wargaming in Military Decision Making and Decision Support. <https://www.sto.nato.int/publications/STO%20Educational%20Notes/STO-EN-SAS-195/EN-SAS-195-07.pdf>
- [63] Chromyszak, C., Jacobson, S., Khosraw, E., Lavey, S., Lewis, M., Mabe, S., Olsen, A., Ryals, C., Sahagun, K., Williamson, I., & Winstead, S. (2022, March 2). Navigating new threats: NATO's posture on emerging technologies. <https://digital.lib.washington.edu/researchworks/items/b286c32c-406f-4c6c-baa8-803a402be940>
- [64] NATO forces use predictive Maintenance to enhance. . . . - Google Scholar. (n.d.). https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&as_ylo=2015&as_yhi=2025&as_vis=1&q=NATO+forces+use+predictive+maintenance+to+enhance+the+reliability+of+their+armored+fleets.++&btnG=
- [65] Ekundayo, F. (2024). Leveraging AI-Driven Decision Intelligence for Complex Systems Engineering. *Int J Res Publ Rev*, 5(11), 1–10. https://www.researchgate.net/profile/Foluke-Ekundayo/publication/386077377_International_Journal_of_Research_Publication_and_Reviews_Leveraging_AI-Driven_Decision_Intelligence_for_Complex_Systems_Engineering/links/67420ec027661f7ae666353b/International-Journal-of-Research-Publication-and-Reviews-Leveraging-AI-Driven-Decision-Intelligence-for-Complex-Systems-Engineering.pdf
- [66] Morgan, F. E., Boudreaux, B., Lohn, A. J., Ashby, M., Curriden, C., Klima, K., & Grossman, D. (2020). Military applications of artificial intelligence. Santa Monica: RAND Corporation. https://www.rand.org/content/dam/rand/pubs/research_reports/RR3100/RR3139-1/RAND_RR3139-1.pdf
- [67] Kania, E. B. (2022). Chinese military innovation in artificial intelligence. Centre for a New American Security. <https://www.jstor.org/stable/pdf/resrep28742.pdf>
- [68] Bistron, M., & Piotrowski, Z. (2021). Artificial intelligence applications in military systems and their influence on citizens' sense of security. *Electronics*, 10(7), 871. <https://doi.org/10.3390/electronics10070871>
- [69] Hang, C., Yu, P., Morabito, R., & Tan, C. (2024). Large Language Models Meet Next-Generation Networking Technologies: A review. *Future Internet*, 16(10), 365. <https://doi.org/10.3390/fi16100365>
- [70] Yadav, N., Gupta, V., Garg, A. (2024). Industrial Automation Through AI-Powered Intelligent Machines—Enabling Real-Time Decision-Making. In: Arya, R., Sharma, S.C., Verma, A.K., Iyer, B. (eds) *Recent Trends in Artificial Intelligence Towards a Smart World. Frontiers of Artificial Intelligence, Ethics and Multidisciplinary Applications*. Springer, Singapore. https://doi.org/10.1007/978-981-97-6790-8_5
- [71] Olujimi, P.A., Ade-Ibijola, A. NLP techniques for automating responses to customer queries: a systematic review. *Discov Artif Intell* 3, 20 (2023). <https://doi.org/10.1007/s44163-023-00065-5>
- [72] Streamlining industrial robot maintenance: an intelligent voice query approach for enhanced efficiency. (n.d.). IEEE Journals & Magazine | IEEE Xplore. <https://ieeexplore.ieee.org/abstract/document/10659752>
- [73] Braun, C. P. (n.d.). Exploring a new conceptual framework in aviation maintenance incident reporting using natural language processing. Scholarly Commons. <https://commons.erau.edu/edt/832/>
- [74] Dziuba, A. O., & Дзюба, А. О. (2024, June 15). An intelligent system for predicting the need to replace aircraft parts based on transformers. <https://er.nau.edu.ua/items/a7439dd0-6281-4b76-930c-a30570b7ad48>
- [75] Paul, S., Purkaystha, B. S., & Das, P. (2018). NLP TOOLS USED IN CIVIL AVIATION: A SURVEY. *International journal of advanced research in computer science*, 9(2). <https://www.researchgate.net/profile/Saptarshi-Paul->

2/publication/324723345_NLP_TOOLS_USED_IN_CIVIL_AVIATION_A_SURVEY/links/610057ab0c2bfa282a060fbf/NLP-TOOLS-USED-IN-CIVIL-AVIATION-A-SURVEY.pdf

- [76] Johri, P., Khatri, S. K., Al-Taani, A. T., Sabharwal, M., Suvanov, S., & Kumar, A. (2021). Natural Language Processing: history, evolution, application, and future work. In Lecture notes in networks and systems (pp. 365-375). https://doi.org/10.1007/978-981-15-9712-1_31
- [77] Ahmed, N. U. (2022, January 4). INTEGRATING MACHINE LEARNING IN MILITARY INTELLIGENCE PROCESS: STUDY OF FUTURISTIC APPROACHES TOWARDS HUMAN-MACHINE COLLABORATION. <https://ndcjournal.ndc.gov.bd/ndcj/index.php/ndcj/article/view/315>
- [78] Fukawa, N., & Rindfleisch, A. (2023). Enhancing innovation via the digital twin. *Journal of Product Innovation Management*, 40(4), 391-406. <https://doi.org/10.1111/jpim.12655>
- [79] Antony Vijay, J. Digital Twin Applications. https://www.researchgate.net/profile/Mythily-Ganesh/publication/380891908_Digital_Twin_Application_in_Various_Sectors/links/667a4df71846ca33b84fb/c50/Digital-Twin-Application-in-Various-Sectors.pdf
- [80] Popa, L., Berdich, A., & Groza, B. (2022). CarTwin—Development of a digital twin for a Real-World In-Vehicle CAN network. *Applied Sciences*, 13(1), 445. <https://doi.org/10.3390/app13010445>
- [81] Van Dinter, R., Tekinerdogan, B., & Catal, C. (2022). Predictive Maintenance using digital twins: A systematic literature review. *Information and Software Technology*, 151, 107008. <https://doi.org/10.1016/j.infsof.2022.107008>
- [82] Javaid, M., Haleem, A., & Suman, R. (2023). Digital Twin Applications toward Industry 4.0: A Review. *Cognitive Robotics*, 3, 71-92. <https://doi.org/10.1016/j.cogr.2023.04.003>
- [83] Soori, M., Arezoo, B., & Dastres, R. (2023). Digital twin for smart manufacturing, A review. *Sustainable Manufacturing and Service Economics*, 2, 100017. <https://doi.org/10.1016/j.smse.2023.100017>
- [84] Xia, J., & Zou, G. (2022). Operation and maintenance optimisation of offshore wind farms based on digital twin: A review. *Ocean Engineering*, 268, 113322. <https://doi.org/10.1016/j.oceaneng.2022.113322>
- [85] Uhlemann, T. H., Schock, C., Lehmann, C., Freiberger, S., & Steinhilper, R. (2017). The Digital Twin: Demonstrating the potential of real-time data acquisition in production systems. *Procedia Manufacturing*, 9, 113-120. <https://doi.org/10.1016/j.promfg.2017.04.043>
- [86] Guo, J., Yang, Z., Chen, C., Luo, W., & Hu, W. (2020). Real-time prediction of remaining useful life and preventive maintenance strategy based on digital Twin. *Journal of Computing and Information Science in Engineering*, 21(3). <https://doi.org/10.1115/1.4049153>
- [87] Lakshmi, V., & Bahli, B. (2019). Understanding the robotisation landscape transformation: A centring resonance analysis. *Journal of Innovation & Knowledge*, 5(1), 59-67. <https://doi.org/10.1016/j.jik.2019.01.005>
- [88] Javaid, M., Haleem, A., Singh, R. P., & Suman, R. (2021). Substantial capabilities of robotics in enhancing industry 4.0 implementation. *Cognitive Robotics*, 1, 58-75. <https://doi.org/10.1016/j.cogr.2021.06.001>
- [89] Yaseen, A. (2021, March 25). REDUCING INDUSTRIAL RISK WITH AI AND AUTOMATION. <https://research.tensorgate.org/index.php/IJIAAC/article/view/96>
- [90] Abbasi, N., & Hussain, H. K. (2024). Integrating artificial intelligence and smart technology: AI-Driven robotics in surgery: Precision and efficiency. *Deleted Journal*, 5(1), 381-390. <https://doi.org/10.60087/jaigs.v5i1.207>
- [91] Mohammed, R. (2022). Artificial Intelligence-Driven Robotics for Autonomous Vehicle Navigation and Safety. *NEXG AI Review of America*, 3(1), 21-47. https://www.researchgate.net/profile/Rahimoddin-Mohammed/publication/383659067_Artificial_Intelligence-Driven_Robotics_for_Autonomous_Vehicle_Navigation_and_Safety/links/66d5997c2390e50b2c26aa71/Artificial-Intelligence-Driven-Robotics-for-Autonomous-Vehicle-Navigation-and-Safety.pdf
- [92] Abbasi, N., & Hussain, H. K. (2024). Integration of artificial intelligence and smart technology: AI-driven robotics in surgery: precision and efficiency. *Journal of Artificial Intelligence General Science (JAIGS)* ISSN: 3006-4023, 5(1), 381-390. <http://newjaigs.com/index.php/JAIGS/article/view/207> suggestions.
- [93] Wang, J., & Ueda, T. (2023). A review study on uncrewed aerial vehicle and mobile robot technologies on damage inspection of reinforced concrete structures. *Structural Concrete*, 24(1), 536-562. <https://doi.org/10.1002/suco.202200846>

[94] Kerle, N., Nex, F., Gerke, M., Duarte, D., & Vetrivel, A. (2019). UAV-Based Structural Damage Mapping: A review. *ISPRS International Journal of Geo-Information*, 9(1), 14. <https://doi.org/10.3390/ijgi9010014>

[95] Shin, H., Kim, J., Kim, K., & Lee, S. (2023). An empirical case study on applying artificial intelligence and uncrewed aerial vehicles for the efficient visual inspection of residential buildings. *Buildings*, 13(11), 2754. <https://doi.org/10.3390/buildings13112754>

[96] Kangunde, V., Jamisola, R. S., & Theophilus, E. K. (2021). A review on drones controlled in real-time. *International Journal of Dynamics and Control*, 9(4), 1832–1846. <https://doi.org/10.1007/s40435-020-00737-5>

[97] Soori, M., Arezoo, B., & Dastres, R. (2023). Artificial intelligence, machine learning and deep learning in advanced robotics, a review. *Cognitive Robotics*, 3, 54–70. <https://doi.org/10.1016/j.cogr.2023.04.001>

[98] Uguina, J. R. M., & Ruiz, A. B. M. (2019). Robotics and health and safety at work. *Int J Swarm Evol Comput*, 8, 176. <https://e-archivo.uc3m.es/rest/api/core/bitstreams/d1b7e482-9b61-42fd-a5d7-740d51a276a1/content>

[99] Ha, Q., Yen, L., & Balaguer, C. (2019). Robotic autonomous systems for earthmoving in military applications. *Automation in Construction*, 107, 102934. <https://doi.org/10.1016/j.autcon.2019.102934>

[100] Allik, S., Fahey, S., Jermalavičius, T., McDermott, R., & Muzyka, K. (2021). The Rise of Russia's Military Robots: Theory, Practice and Implications. Tallinn: International Centre for Defence and Security. https://www.mod.gov.lv/sites/mod/files/document/ICDS-Analysis_The-Rise-of-Russias-Military-Robots_Sten-Allik-et-al_February-2021.pdf

[101] Yazdi, M. (2024). Augmented reality (AR) and virtual reality (VR) in maintenance training. In Springer series in reliability engineering (pp. 169–183). https://doi.org/10.1007/978-3-031-53514-7_10

[102] Simon, J., Gogolák, L., Sárosi, J., & Fürstner, I. (2023). Augmented Reality-based distant maintenance approach. *Actuators*, 12(7), 302. <https://doi.org/10.3390/act12070302>

[103] AI-powered interfaces for extended reality to support remote Maintenance. (n.d.). IEEE Conference Publication | IEEE Xplore. <https://ieeexplore.ieee.org/abstract/document/10181189>

[104] Xie, B., Liu, H., Alghofaili, R., Zhang, Y., Jiang, Y., Lobo, F. D., Li, C., Li, W., Huang, H., Akdere, M., Mousas, C., & Yu, L. (2021). A review on virtual Reality skill training applications. *Frontiers in Virtual Reality*, 2. <https://doi.org/10.3389/frvir.2021.645153>

[105] Scott, H. (n.d.). An investigation of acceptance and e-readiness for the application of virtual reality and augmented reality technologies to maintenance training in the manufacturing industry | International Journal of Mechatronics and Manufacturing Systems. International Journal of Mechatronics and Manufacturing Systems. <https://www.inderscienceonline.com/doi/abs/10.1504/IJMMS.2020.108310>

[106] Li, X., Yi, W., Chi, H., Wang, X., & Chan, A. P. (2017). A critical review of virtual and augmented reality (VR/AR) applications in construction safety. *Automation in Construction*, 86, 150–162. <https://doi.org/10.1016/j.autcon.2017.11.003>

[107] Jetter, J., Eimecke, J., & Rese, A. (2018). Augmented reality tools for industrial applications: What are potential key performance indicators and who benefits? *Computers in Human Behavior*, 87, 18–33. <https://doi.org/10.1016/j.chb.2018.04.054>

[108] Ita, Industriale, I., & Assegn, N. (2024). From Research to Service: Exploring AR/VR in the Industrial Context. <https://flore.unifi.it/handle/2158/1358317>

[109] Eswaran, M., Gulivindala, A. K., Inkulu, A. K., & Bahubalendruni, M. R. (2022). Augmented reality-based guidance in product assembly and maintenance/repair perspective: A state of the art review on challenges and opportunities. *Expert Systems With Applications*, 213, 118983. <https://doi.org/10.1016/j.eswa.2022.118983>

[110] Familoni, N. B. T., & Onyebuchi, N. N. C. (2024). AUGMENTED AND VIRTUAL REALITY IN US EDUCATION: A REVIEW: ANALYSING THE IMPACT, EFFECTIVENESS, AND FUTURE PROSPECTS OF AR/VR TOOLS IN ENHANCING LEARNING EXPERIENCES. *International Journal of Applied Research in Social Sciences*, 6(4), 642–663. <https://doi.org/10.51594/ijarss.v6i4.1043>

[111] Jose, B. Augmented Reality in Manufacturing: A Comprehensive Review. *GYANVESHAN*, 5. <https://mgmcts.ac.in/wp-content/uploads/2024/02/Gyanveshan-Vol-8-Final-Copy.pdf#page=8>

[112] Wei, S., Bao, Y., & Li, H. (2019). Optimal policy for structure maintenance: A deep reinforcement learning framework. *Structural Safety*, 83, 101906. <https://doi.org/10.1016/j.strusafe.2019.101906>

- [113] Paraschos, P. D., Koulinas, G. K., & Koulouriotis, D. E. (2020). Reinforcement learning for combined production maintenance and quality control of a manufacturing system with deterioration failures. *Journal of Manufacturing Systems*, 56, 470–483. <https://doi.org/10.1016/j.jmsy.2020.07.004>
- [114] Ernst, D., & Louette, A. (2024). Introduction to reinforcement learning. Feuerriegel, S., Hartmann, J., Janiesch, C., and Zschech, P, 111-126. https://damien-ernst.be/wp-content/uploads/2024/03/f90de-introduction_to_reinforcement_learning.pdf
- [115] Goriparthi, R. G. (2024). Reinforcement Learning in IoT: Enhancing Smart Device Autonomy through AI. *Computing*, 2, 89–109. https://www.researchgate.net/profile/Amelia-Ethan/publication/386142956_Reinforcement_Learning_in_IoT_Enhancing_Smart_Device_Autonomy_through-AI/links/67467a2aa7fbc259f1903dd6/Reinforcement-Learning-in-IoT-Enhancing-Smart-Device-Autonomy-through-AI
- [116] Yang, T., Zhao, L., Li, W., & Zomaya, A. Y. (2020). Reinforcement learning in sustainable energy and electric systems: a survey. *Annual Reviews in Control*, 49, 145–163. <https://doi.org/10.1016/j.arcontrol.2020.03.001>
- [117] Xu, Z., & Saleh, J. H. (2021). Machine learning for reliability engineering and safety applications: Review current status and future opportunities. *Reliability Engineering & System Safety*, 211, 107530. <https://doi.org/10.1016/j.ress.2021.107530>
- [118] Rocchetta, R., Bellani, L., Compare, M., Zio, E., & Patelli, E. (2019). A reinforcement learning framework for optimal operation and Maintenance of power grids. *Applied Energy*, 241, 291–301. <https://doi.org/10.1016/j.apenergy.2019.03.027>
- [119] Aggarwal, K., Mijwil, M. M., Al-Mistarehi, A. H., Alomari, S., Gök, M., Alaabdin, A. M. Z., & Abdulrhman, S. H. (2022). Has the future started? The current growth of artificial intelligence, machine learning, and deep learning. *Iraqi Journal for Computer Science and Mathematics*, 3(1), 115–123. <https://www.iasj.net/iasj/download/cefbfd60eb11898a>
- [120] Svenmarck, P., Luotsinen, L., Nilsson, M., & Schubert, J. (2018, May). Possibilities and challenges for artificial intelligence in military applications. In *Proceedings of the NATO Big Data and Artificial Intelligence for Military Decision Making Specialists' Meeting* (Vol. 1). https://www.researchgate.net/profile/Johan-Schubert/publication/326774966_Possibilities_and_Challenges_for_Artificial_Intelligence_in_Military_Applications/links/5b62d8140f7e9bc79a75979c/Possibilities-and-Challenges-for-Artificial-Intelligence-in-Military-Applications.pdf
- [121] Kouakou, D. C., & Szego, E. (2024). Evaluating the integration of artificial intelligence technologies in defence activities and the effect of national innovation system performance on its enhancement. <https://mpra.ub.uni-muenchen.de/120617/>
- [122] Tarraf, D. C., Shelton, W., Parker, E., Alkire, B., Carew, D. G., Grana, J., ... & Warren, K. (2019). The Department of Defense's posture for artificial intelligence. RAND Corporation.
- [123] Eswararaj, D., Koppada, L. R., & Bodala, R. S. (2025). Quantifying the Influence of Artificial Intelligence and Machine Learning in Predictive Maintenance for Vehicle Fleets and Its Impact on Reliability and Cost Savings. <https://doi.org/10.26438/ijcse/v13i2.715>
- [124] Alam, M., Islam, M. R., & Shil, S. K. (2023). AI-Based Predictive Maintenance for US Manufacturing: Reducing downtime and increasing productivity. *International Journal of Advanced Engineering Technologies and Innovations*, 1(01), 541-567.
- [125] Gadde, H. (2021). AI-driven predictive maintenance in relational database systems. *International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence*, 12(1), 386–409.
- [126] Cavus, M., Dissanayake, D., & Bell, M. (2025). Next generation of electric vehicles: AI-driven approaches for predictive Maintenance and battery management. *Energies*, 18(5), 1041. <https://doi.org/10.3390/en18051041>
- [127] Vyas, V., & Xu, Z. (2024, December 12). Key safety design overview in AI-driven autonomous vehicles. arXiv.org. <https://arxiv.org/abs/2412.08862>
- [128] Ntanis, G., Aggelakakis, A., Boile, M., Tsaganos, L., Papaefthimiou, K., Baroutsi, M., Chatzinikolaou, S., Paven, D., Vlascici, M., & Binchiciu, E. (2025). Innovative adaptation of predictive maintenance familiarisation content to address contemporary requirements in the transportation sector. *Lecture notes in intelligent transportation and infrastructure* (pp. 185–204). https://doi.org/10.1007/978-3-031-82818-8_15

[129] Vujsadinovic, V. L., Damnjanovic, A., Cakic, A., Petkovic, D. R., Prelevic, M., Pantovic, V., Stojanovic, M., Vidojevic, D., Vranjes, D., & Bodolo, I. (2024). AI-Driven Approach for Enhancing Sustainability in Urban Public Transportation. *Sustainability*, 16(17), 7763. <https://doi.org/10.3390/su16177763>

[130] Ejjami, R., & Boussalham, K. (2024). Industry 5.0 in Manufacturing: Enhancing Resilience and Responsibility through AI-Driven Predictive Maintenance, Quality Control, and Supply Chain Optimization. *International Journal For Multidisciplinary Research*, 6(4).

[131] Achouch, M., Dimitrova, M., Ziane, K., Karganroudi, S. S., Dhouib, R., Ibrahim, H., & Adda, M. (2022). On Predictive Maintenance in Industry 4.0: Overview, models, and challenges. *Applied Sciences*, 12(16), 8081. <https://doi.org/10.3390/app12168081>

[132] N, N. (2024, March 22). A COMPREHENSIVE REVIEW OF AI'S DEPENDENCE ON DATA. https://lib-index.com/index.php/IJADS/article/view/IJADS_01_01_001

[133] Yammanur, V. (2025). INTEGRATED ENTERPRISE SYSTEMS: LEVERAGING ERP, EDI, AND AI FOR ENHANCED US BUSINESS COMPETITIVENESS. *INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING AND TECHNOLOGY*, 16, 454–466.

[134] Bistron, M., & Piotrowski, Z. (2021). Artificial intelligence applications in military systems and their influence on citizens' sense of security. *Electronics*, 10(7), 871. <https://doi.org/10.3390/electronics10070871>

[135] Lachova, M. (2024). Data, Privacy and Human-Centered AI in Defense and Security Systems: Legal and Ethical Considerations. *Information & Security*, 55(2), 213–221.

[136] Yampolskiy, R. V., & Spellchecker, M. S. (2016, October 25). Artificial Intelligence Safety and Cybersecurity: A Timeline of AI Failures. *arXiv.org*. <https://arxiv.org/abs/1610.07997>

[137] Jimmy, F. (2021). Emerging threats: The latest cybersecurity risks and the role of artificial intelligence in enhancing cybersecurity defences. *Valley International Journal Digital Library*, 1, 564–74.

[138] Yazdanpanah, V., Gerdin, E. H., Stein, S., Dastani, M., Jonker, C. M., Norman, T. J., & Ramchurn, S. D. (2022). Reasoning about responsibility in autonomous systems: challenges and opportunities. *AI & Society*, 38(4), 1453–1464. <https://doi.org/10.1007/s00146-022-01607-8>

[139] Boutin, B. (2022). State responsibility for military applications of artificial intelligence. *Leiden Journal of International Law*, 36(1), 133–150. <https://doi.org/10.1017/s0922156522000607>

[140] Ige, A. B., Kupa, E., & Ilori, O. (2024). Analysing defence strategies against cyber risks in the energy sector: Enhancing the security of renewable energy sources. *International Journal of Science and Research Archive*, 12(1), 2978–2995.

[141] Kavanagh, C. (2022). New tech, threats, and governance challenges: an opportunity to craft smarter responses? *Carnegie Endowment for International Peace*.

[142] Candreva, P. J. (2017). National defence budgeting and financial management: Policy & practice. IAP.

[143] Kulkov, I., Kulkova, J., Rohrbeck, R., Menvielle, L., Kaartemo, V., & Makkonen, H. (2023). Artificial intelligence-driven sustainable development: Examining organisational, technical, and processing approaches to achieving global goals. *Sustainable Development*, 32(3), 2253–2267. <https://doi.org/10.1002/sd.2773>

[144] Candreva, P. J. (2017). National defence budgeting and financial management: Policy & practice. IAP.

[145] Rojas, L., Peña, Á., & Garcia, J. (2025). AI-Driven Predictive Maintenance in Mining: A systematic literature review on fault detection, digital twins, and intelligent asset management. MDPI. <https://doi.org/10.3390/app15063337>

[146] Foresti, R., Rossi, S., Magnani, M., Lo Bianco, C. G., & Delmonte, N. (2020). Smart Society and Artificial intelligence: big data scheduling and the global standard method applied to smart Maintenance. *Engineering*, 6(7), 835–846. <https://doi.org/10.1016/j.eng.2019.11.014>

[147] Zamalloa, L. J., & Dağdelen, K. (2024). A new approach to developing operational fleet management systems using adaptative AI techniques: Analysis of adaptative goal weights. *Mining Metallurgy & Exploration*. <https://doi.org/10.1007/s42461-024-01089-w>

[148] Ejjami, R., & Boussalham, K. (2024). Industry 5.0 in Manufacturing: Enhancing Resilience and Responsibility through AI-Driven Predictive Maintenance, Quality Control, and Supply Chain Optimization. *International Journal For Multidisciplinary Research*, 6(4).

[149] Uren, V., & Edwards, J. S. (2022). Technology readiness and the organisational journey towards AI adoption: An empirical study. *International Journal of Information Management*, 68, 102588. <https://doi.org/10.1016/j.ijinfomgt.2022.102588>

[150] Agustiady, T., & Cudney, E. A. (2023). Total Productive Maintenance: Strategies and implementation guide. CRC press.

[151] Baumler, R. (2024). Thinking MASS in System. In *Maritime Autonomous Surface Ships (MASS)-Regulation, Technology, and Policy: Three Dimensions of Effective Implementation* (pp. 181–208). Cham: Springer Nature Switzerland.

[152] Karuppiah, K., Sankaranarayanan, B., & Ali, S. M. (2021). On sustainable predictive Maintenance: Exploration of key barriers using an integrated approach. *Sustainable Production and Consumption*, 27, 1537–1553. <https://doi.org/10.1016/j.spc.2021.03.023>

[153] Achouch, M., Dimitrova, M., Ziane, K., Karganroudi, S. S., Dhouib, R., Ibrahim, H., & Adda, M. (2022). On Predictive Maintenance in Industry 4.0: Overview, models, and challenges. *Applied Sciences*, 12(16), 8081. <https://doi.org/10.3390/app12168081>

[154] Gilli, A., Gilli, M., Leonard, A. S., & Stanley-Lockman, Z. (2022). "NATO-Mation": Strategies for Leading in the Age of Artificial Intelligence. NATO Defense College..

[155] Soare, S. R. (2023). European Military AI. In Routledge eBooks (pp. 80–111). <https://doi.org/10.4324/9781003218326-5>

[156] Xue, Y., Fang, C., & Dong, Y. (2021). The impact of new relationship learning on artificial intelligence technology innovation. *International Journal of Innovation Studies*, 5(1), 2–8. <https://doi.org/10.1016/j.ijis.2020.11.001>

[157] Mourtzis, D., Angelopoulos, J., & Panopoulos, N. (2022). Design and development of an Edge-Computing platform towards 5G technology adoption for improving equipment predictive maintenance. *Procedia Computer Science*, 200, 611–619. <https://doi.org/10.1016/j.procs.2022.01.259>

[158] Iyelolu, T. V., Agu, E. E., Idemudia, C., & Ijomah, T. I. (2024). Driving SME innovation with AI solutions: Overcoming adoption barriers and future growth opportunities. *International Journal of Science and Technology Research Archive*, 7(1), 036–054.

[159] Onwusinkwue, N. S., Osasona, N. F., Ahmad, N. I. a. I., Anyanwu, N. a. C., Dawodu, N. S. O., Obi, N. O. C., & Hamdan, N. A. (2024). Artificial intelligence (AI) in renewable energy: A review of predictive Maintenance and energy optimisation. *World Journal of Advanced Research and Reviews*, 21(1), 2487–2799. <https://doi.org/10.30574/wjarr.2024.21.1.0347>

[160] Rashid, A. B., Kausik, A. K., Sunny, A. a. H., & Bappy, M. H. (2023). Artificial intelligence in the military: An overview of the capabilities, applications, and challenges. *International Journal of Intelligent Systems*, 2023, 1–31. <https://doi.org/10.1155/2023/8676366>

[161] Zong, Z., & Guan, Y. (2024). AI-Driven intelligent data Analytics and predictive Analysis in Industry 4.0: Transforming knowledge, innovation, and efficiency. *Journal of the Knowledge Economy*. <https://doi.org/10.1007/s13132-024-02001-z>

[162] Iqbal, S., Rizvi, S. W. A., Haider, M. H., & Raza, S. (2023). Artificial Intelligence in Security and Defense: Explore the integration of AI in military strategies, security policies, and its implications for global power dynamics. *International Journal of Human and Society*, 3(4), 341–353.

[163] Ayvaz, S., & Alpay, K. (2021). Predictive maintenance system for production lines in manufacturing: A machine learning approach using IoT data in real-time. *Expert Systems With Applications*, 173, 114598. <https://doi.org/10.1016/j.eswa.2021.114598>

[164] Boppana, V. R. (2023). Data Analytics for Predictive Maintenance in Healthcare Equipment. *EPH-International Journal of Business & Management Science*, 9(2), 26–36.

[165] Ucar, A., Karakose, M., & Kırımcı, N. (2024). Artificial intelligence for Predictive maintenance Applications: key components, trustworthiness, and future trends. *Applied Sciences*, 14(2), 898. <https://doi.org/10.3390/app14020898>

[166] Zhang, S., Huang, K., & Yuan, Y. (2021). Spare Parts Inventory Management: A Literature Review. *Sustainability*, 13(5), 2460. <https://doi.org/10.3390/su13052460>

[167] Adewusi, A. O., Komolafe, A. M., Ejairu, E., Aderotoye, I. A., Abiona, O. O., & Oyeniran, O. C. (2024). The role of predictive analytics in optimising supply chain resilience: a review of techniques and case studies. *International Journal of Management & Entrepreneurship Research*, 6(3), 815-837.

[168] Achouch, M., Dimitrova, M., Ziane, K., Karganroudi, S. S., Dhouib, R., Ibrahim, H., & Adda, M. (2022). On Predictive Maintenance in Industry 4.0: Overview, models, and challenges. *Applied Sciences*, 12(16), 8081. <https://doi.org/10.3390/app12168081>

[169] Ayvaz, S., & Alpay, K. (2021). Predictive maintenance system for production lines in manufacturing: A machine learning approach using IoT data in real-time. *Expert Systems With Applications*, 173, 114598. <https://doi.org/10.1016/j.eswa.2021.114598>

[170] Mohammadi, S., Karganroudi, S. S., & Rahamanian, V. (2024). Advancements in Smart Nondestructive Evaluation of Industrial Machines: A comprehensive review of computer vision and AI techniques for infrastructure maintenance. *Machines*, 13(1), 11. <https://doi.org/10.3390/machines13010011>

[171] Mittal, V., Devi, P. S., Pandey, A. K., Singh, T., Dhingra, L., & Beliakov, S. I. (2024). IOT-Enabled predictive Maintenance for sustainable transportation fleets. *E3S Web of Conferences*, 511, 01012. <https://doi.org/10.1051/e3sconf/202451101012>

[172] Rai, A., shastri, J., & Bansal, H. (2024). Artificial Intelligence Techniques in Predictive Maintenance, Their Applications, Challenges, and Prospects. *Artificial Intelligence-Enabled Digital Twin for Smart Manufacturing*, 565-579. <https://doi.org/10.1002/9781394303601.ch24>

[173] Van Dinter, R., Tekinerdogan, B., & Catal, C. (2022). Predictive Maintenance using digital twins: A systematic literature review. *Information and Software Technology*, 151, 107008. <https://doi.org/10.1016/j.infsof.2022.107008>

[174] Hu, X., & Assaad, R. H. (2023). Using uncrewed ground vehicles (mobile robots) and uncrewed aerial vehicles (drones) in the civil infrastructure asset management sector: Applications, robotic platforms, sensors, and algorithms. *Expert Systems With Applications*, 232, 120897. <https://doi.org/10.1016/j.eswa.2023.120897>

[175] Galar, D., Kumar, U., & Seneviratne, D. (2020). Robots, drones, UAVs, and UGVs are used for operation and maintenance. In CRC Press eBooks. <https://doi.org/10.1201/9780429452260>

[176] Yazdi, M. (2024). Augmented reality (AR) and virtual reality (VR) in maintenance training. In Springer series in reliability engineering (pp. 169–183). https://doi.org/10.1007/978-3-031-53514-7_10

[177] Manda, J. K. (2025). Augmented Reality (AR) applications in telecom maintenance: Utilising AR technologies for remote Maintenance and troubleshooting in telecom infrastructure. *SSRN Electronic Journal*. <https://doi.org/10.2139/ssrn.5136767>

[178] Siraskar, R., Kumar, S., Patil, S., Bongale, A., & Kotecha, K. (2023). Reinforcement learning for predictive Maintenance: a systematic technical review. *Artificial Intelligence Review*, 56(11), 12885–12947. <https://doi.org/10.1007/s10462-023-10468-6>