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Abstract

This study tackles the persistent issue of multicollinearity in Gaussian linear regression which undermines the efficiency
of Ordinary Least Squares (OLS) estimators. While Ridge Regression and Principal Component Analysis (PCA) are
common remedies, they have limitations in terms of bias control and interpretability. To address this, the research
proposes hybrid Ridge - PCA estimators using four newly developed ridge parameters combined with PCA. A Monte
Carlo simulation evaluated 21 estimators including OLS, Ridge, PCA, and Liu estimators under varying sample sizes,
error variances and multicollinearity levels using Mean Squared Error (MSE) as the performance metric. Results show
that a newly hybrid estimator consistently outperformed other proposed and existing estimators by achieving the
lowest MSE. The study demonstrates the strength of integrating regularization with dimensionality reduction to
improve regression under multicollinearity.

Keywords: Multicollinearity; Ridge Regression; Principal Component Estimator; Hybrid Estimators; Monte Carlo
Simulation

1. Introduction

The linear regression model is a statistical method that analyzes the relationship between an effect or dependent
variable and one or more independent variables helping to explain or predict outcomes (Fayose et al,, 2023b; Aladesuyi
etal, 2025). The model is simply defined as follows:

Y, = ,Bo + ﬂlxu + ﬂzxiz T + ﬂk X TE€i=1,n, e (1

where yi is the effect variable, Xil,..., Xik are the concomitant variables, ,Bo, Lrs o ﬂk are the unknown parameters

to be estimated, €j denotes the disturbance term and it is assumed to be normally distributed with mean zero and

constant variance 2. The model is simply a simple regression model when there is one concomitant variable. The
parameters in model (1) are mostly estimated by the Method of Least Squares (MLS). MLS is generally preferred and
possesses some humbly properties when the assumptions of the linear regression models are intact, this makes the
model to be classical (Owolabi et al, 2022 and Dawoud et al, 2022). These include linear relationship among the
concomitant variables; the disturbance terms must come from a Gaussian distribution and has non scattered variance
and others (Chatterjee and Hadi, 1977). In reality most of the aforementioned assumptions are normally violated. For
instance, literature has shown that linear relationship often exists among concomitant variables which are termed
multicollinearity (Fayose and Ayinde 2019; Shewa and Ugwuowo, 2022a). Multicollinearity is a phenomenon where

* Corresponding author: Remilekun Enitan Alabi

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0.


http://creativecommons.org/licenses/by/4.0/deed.en_US
https://wjarr.com/
https://doi.org/10.30574/wjarr.2025.27.1.2559
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Shewa%2C+Gladys+Amos
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Ugwuowo%2C+Fidelis+Ifeayi
https://crossmark.crossref.org/dialog/?doi=10.30574/wjarr.2025.27.1.2559&domain=pdf

World Journal of Advanced Research and Reviews, 2025, 27(01), 942-957

two or more concomitant variables are highly correlated in a Gaussian linear regression (Neter, et al. 1996; Fayose et
al, 2023a and Aladesuyi et al, 2025). There is tendency for perfect or strong or moderate linear dependency among the
concomitant variables (Shewa and Ugwuowo, 2022a; Shewa and Ugwuowo, 2022b). The method of least squares is
unbiased but inefficient when there is linear relationship among the concomitant variables (Gujarati et al, 2012). It
yields regression coefficients whose absolute values are too large and whose signs may actually reverse with negligible
changes in the data (Buonaccorsi, 1996). If the multicollinearity is not perfect but high, the estimated coefficients can
become unstable and highly sensitive to slight changes in the model leading to inflated standard errors and misleading
inferences (Belseley et al, 1980; Fayose and Ayinde, 2019). Consequently, reliable interpretation of the model
parameters may be compromised undermining the credibility of the results derived from such analysis. The pursuit of
effective techniques to mitigate the adverse effects of multicollinearity is of paramount importance in both theoretical
and applied statistics.

Among the existing methods or approaches proposed to address or handle multicollinearity are Ridge Regression,
Principal Component Analysis (PCA) among others. Both Ridge and PCA have emerged as prominent methodologies
(Hoerl and Kennard, 1970; Jolliffe, 1986). Ridge regression offers a regularization technique that modifies the Ordinary
least squares (OLSE) estimation process by introducing a penalty term (k) to the loss function thus allowing for the
shrinkage of coefficient estimates towards zero (Hoerl and Kennard, 1970, Fayose et al, 2023b). The ridge parameter
(k) counteracts the inflation of variances associated with multicollinearity effectively enhancing the stability of the
estimates and producing more reliable and responsive predictions.

In contrast, PCA serves as a dimensionality reduction technique that transforms the original correlated variables into a
set of uncorrelated variables often called principal components (Jolliffe, 2002). By focusing on the principal components
that explain the most variance in the data, PCA can help circumvent multicollinearity problem by ensuring that
regression model utilizes orthogonal predictors. While both Ridge regression and PCA have demonstrated utility in
addressing multicollinearity, each method presents notable limitations. Ridge regression while effective in controlling
for multicollinearity does not completely eliminate correlation among predictors, it merely diminishes the variability of
the coefficient estimates. Moreover, the choice of penalty parameter (k) can significantly influence the model’s
performance necessitating careful cross - validation (Tikhonov, 1963). Meanwhile, PCA while adept at reducing
dimensionality and addressing multicollinearity transforms the original predictors into a new set of components that
may lack interpretability in the context of the original variables posing challenges for practical application and insight
derivation (Jolliffe, 1986).

To harness the strengths of both Ridge regression and PCA while mitigating their respective limitations, the concept of
hybrid or combined estimators has been introduced by different authors in recent literature. These combined
estimators integrate Ridge parameter (k) with PCA estimator to form or create a more robust framework or new hybrid
estimator to tackle multicollinearity in Gaussian linear regression model. Wang et al, (2013) proposed a hybrid
estimator that combines Ridge parameter (k) with PCA to improve parameter estimation in high dimensional settings.
Their approach demonstrated a significant reduction in mean squared error (MSE) compared to standard methods.
Other authors that have utilized these combined approaches are Zou and Hastie (2005), Buhlmann and Van de Geer
(2011); Chang and Yang (2012); Zhang and Li (2015); Huang and Wang (2018) and Lukman, et al,, (2020) among others.
The paper intends to comprehensively propose new ridge parameter k’s and combine them with PCA to form new
hybrid estimators to resolve the problem of multicollinearity within the Gaussian linear regression framework through
simulation studies. We compared the estimators’ performance to that of some existing techniques. Section 2 contains
the methodology. Section 3 presents the simulation design, while Section 4 presents simulation results and while
Section 5 is the conclusion.

1.1. Existing and Proposed Estimators

The matrix form of a linear regression model is defined as:
y=XB+€ = (2)

Where y is the vector of response variables, X is n X p design matrix of concomitant variables or predictor fisp X 1

2
true vector or regression coefficients e ~ N O, O | is the disturbance which is normally distributed with mean 0 and

variance ¢2.
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1.2. The Ridge Estimator

The Ordinary Least Square estimator is defined as: ﬂOLS =S*X'Y 3

where
S=(X'X) (4)

The ridge regression estimator is the mostly used estimators in literature for handling multicollinearity problem. The
Generalized Ridge Estimator is defined as:

Pogre = (S + kl)ilx 'Y

where S is a p X p product matrix of concomitant variables, XY is a p x 1 vector of the product of effect and
concomitant variables, k = diagonal ( Ky Ky k p ) ki=z0,i=1, 2,.., p. kis a non - negative constant called biasing or

ridge parameter. When k = 0, equation (5) returns to OLS estimator (Fayose and Ayinde, 2019; Kibria and Lukman,
2020; Fayose et al, 2023a). In this paper, we considered these selected ‘k’ parameters: Hoerl and Kennard (1975),
Fayose and Ayinde (2019), Kibria and Lukman (2020), Chand and Kibria (2024a), Chand and Kibria (2024b) and also
proposed four new ridge parameters respectively.

2. Principal Component Estimator

The study considered PCA method to also handle multicollinearity in the model and also combined both ridge parameter
and PCA method to form hybrid estimator to handle multicollinearity in the model.

PCA transforms the original predictors x into a new set of uncorrelated variables called principal components.

Prcr :V(\/SV)_1V'X1Y ............ (6)
‘S’ is defined in equation (4).
Let the covariance matrix of X be:
C = XX and the eigen value decomposition of C gives C =VDV' .. (7)
where Vis p X p matrix of eigen vectors (Principal Components) and D = diag (/11, ﬂz e va ) is the diagonal matrix of

the eigen values.
The data matrix X is transformed into principal components Z = XV.
where Z is the new transformed data matrix of uncorrelated principal components
By regressing y on the principal components Z instead of X; is given as:

y=Zy+e = e (8)
Wherey =V'(

The ordinary least square (OLS) estimator for y in this model is given as;

g=(2zy'zyv 9)
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By substituting Z = XV, therefore the PCA estimator of § denoted as ﬂpCA is defined as:

BPCA =y :V(Z'Z)le'y ............ (10)

Where Z7Z =V X' XV =D

Therefore the PCA estimator in equation (10) can further be defined as:

B =VD)VXY (11)

2.1. Some Alternative Ridge Estimators to OLSE

The ridge estimator is defined as:

ﬁRIDGE =(ZzZ+kh)'zy) (12)

where k is the non - negative tuning parameter. Different means of deriving k exists in the literature. These include:
Following (Hoerl and Kennard, 1975), k is given by:

2
. . O
KGRHK edian = k" (HK) = medlan(?) i=1,2,3,p e (13)

28

i=1

n-p
coefficient from the MLS.

where 62 = is the mean square error from the MLS, €; is the it element of the vector, and is the regression

Following (Fayose and Ayinde, 2019), k is given by:

1

i 52 (@80 ) (66 A 12 (622

KGRFA = kM"(FA) = Z e I L 14

- (FA) a} ( 46°? o 26° ()
where Ayiy = Mm(ﬂ«,) =123,...,p.
Following (Kibria and Lukman, 2020), k is given by:

- 62
KGRKL =k""(KL) = min| ————| ... (15)
A2 6—
20, + (Alj
Following (Chand and Kibria, 2024), k is given by:
KGRCK, =K (CK.) =6p" " . (16)
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Following (Chand and Kibria, 2024), k is given by:

KGRCK, =K, (CK,) = 6 max(p®™"2 p" /Py .. (17)

2.1.1. The Liu Estimator

The Liu estimator proposed by Liu (1993) combined the Stein estimator with Ordinary Ridge Regression estimator to
handle multicollinearity. The Liu estimator of £ is defined below as

Bo=(X'X+DT(X'X+dD)B,s  0<d<l. e (18)
. a’
Whered=mMN| ——————| ... (19)

2
o A_2
(5% )+4
Where d = (diag(d,) and is a diagonal matrix of the biasing parameter. The Liu estimator can return to OLS when d =

1.

2.2. Proposed Ridge Estimators

For the ridge parameter whose estimators are defined in (13), (14), (15), (16) and (17), the concept of different forms
by Lukman and Ayinde (2017) and Fayose and Ayinde (2019) was introduced based on minimum (MI), maximum (MA)
and Median (MD) of eigen values (4;) of XX of the design matrix of the regression model.

Consequently, in this paper, we proposed some new ridge parameters whose estimators are defined below:

RIDGE ESTIMATOR (PROPOSED 1)

K (CK2)=émin(p®™ o™y ... (20)

i.e. The minimum version of Chand and Kibria (2024)

RIDGE ESTIMATOR (PROPOSED 2)

i.e. the Harmonic mean version of Kibria and Lukman (2020)

RIDGE ESTIMATOR (PROPOSED 3)

~Median

KLy, — MEMIAN

(22)

02
W ............

i.e. the median version of Kibria and Lukman (2020)

RIDGE ESTIMATOR (PROPOSED 4
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2
FM i . (23)

kKL( ) 2
PROP O'
2 max(a’) + /nax(i,)

Fixed maximum of Kibria and Lukman (2020)

2.3. Derivation of the Properties of PCA with Ridge Estimator

Ayinde et al. (2020) derived a new approach of Principal Component Analysis (PCA) estimator as an alternative to:
Boca=VDW'X'Y (24)

This is defined as
Boca = (X'X)TIX'9, (25)
Where y_ is the predicted variable by regressing y on the r-principal component defined as
A ' -1
§.=2.(2'Z,)'Xy . (26)

Such that Z r= XTr

where T: is the r - principal component and T is the orthogonal matrix. Therefore, combination of PCA with ridge
estimator is defined as:

Bropca= X'X+kD'X'Z.(Z,'Z)'X'y .. (27)

Where k is the biasing parameter for individual biasing parameter of Hoerl and Kennard (1975), Fayose and Ayinde
(2019), Kibra and Lukman (2020), Chand and Kibra (2024a) and Chand and Kibra (2024b)

2.3.1. Properties of IBR—PCA

Mean of the ﬁR_pCA

To compute the mean of ﬂprCA, the expected value of equation (3) is taking
E(Br-pca) = EIXX'X +kD7X'Z,(Z,'Z)"X'y] . (28)

y=Xg+e
B B pen) = E((X X +KI) X Z, [z,'zr )_1 X (XS + e)}

!

-1 ’ -1
=E((XX +|<1)‘1xzr(zr zr) XXB+ (XX + kI)_lXZr(Zr zr) X'ej

— (XX + kI)‘lxzr(zr'zr)_lx XE(B) + (X X +KI) ™ X zr[zr'zrj_lx E(e)
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E(e)=0and E(B) =4
Therefore

(EBr-pca) = X'X +kDTX'Z(Z,'Z)7X" . XB v (29)

Variance of the Br_pca

Var (ﬁR—PCA) -E (:BR—PCA - E(ﬂR—PCA)XﬂR—PCA - E(IBR-PCA)) ............ (30)
~ [[(X’X +kDX'Z(Z,'Z) X'y — (X'X + kD)X’ Z,.(Z,'Z,) "1 X' XB] 21
Tl x+kDX'2,(2,'2) X'y — (X'X + kDX’ Z,(Z,' ) x'xp) 0 T (31)
Further expansion of (30) gives equation (31)
, -2
Var(By peq) = ot (XX +KI) (X Zr)z[zr zrj XWX (32)

Bias of the ﬂAR_pCA
Bias( ﬂAR—PCA)z E(:BR—PCA)_IB
— (XX +KkI)* X zr(zr'zr)_1 XX — .
=((X'X+kDX'Z.(Z,'Z)X'X - DB . (33)
Mean Squared Error Matrix of ,BR_PCA
MSEM ( B pcp)= Var(BR_PCA))+Biasz( Brvcn) e (34)

G2(X'X + kD2(X'Z)2(ZLZ) X' X + [(X'X + kD)1X'Z,.(Z.Z,) 1 X'X — I]2 B2

MSEM(  fBrpca )
C (35)

Also equation (35) can still be written as:

MSEM(Br_pca) = 02(X'X + kD 2(X'Z,)' (X'Z)(Z}Z) T X'X + [(X'X + kDX Z,(Z,Z,) 7 X' X — 1]
(X'X+kD'X'Z(ZLZ)TX'X = 11B'B oo (36)

Recall the general form of linear regression model in matrix form as given in (2)
y=Xp+e
Therefore the canonical form of equation (2) can be written as:

y:WX+€ ............ (37)
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Where W = XQ,« = Q' and Q is the orthogonal matrix whose columns indicate the eigen vectors of the design

matrix X X .Hence, QIX XQ =A= diag(ﬂl,ﬁg I ﬂp) where ﬂl 2 ﬂvz 2.2 /1p >0 are the ordered eigen values
X X . The OLS estimator in equation (2) can be defined as:

Qois =SAYX'Y (38)

Thus the canonical form of equation (26) is
1 ! -t
r_pca :(/\"'kI) er(zr Zr) Xy (39)

For the convenience of establishing the statistical properties of &g_pcp, the following Lemmas will be useful.

Lemma I: Let F be a positive definite matrix such that F > 0 and let &X be some vectors then;

F —aa’ >0 ifand only if &'F "o < 1.(Trenkler and Tontenbury,1990)

Lemma Il : Let OACJ- = Aij for j=1,2 be two competing estimators of (.. Also suppose that

D = Cov(&, ) — Cov(&, ) > 0 where Cov(&, JandCoW &, ) are the covariance matrix of dl an ddz

-1
Therefore D = MSEM (&, )— MSEM(&, )= 0 if and only if &, [UZD + alaf] a, <1l where MSEM(&,) =
COV(a’?l )+ ai a‘i
Such that &; =Bias (di ) = (AiX - I)a
2.3.2. The Superiority of the Proposed Estimator in the Sense of MSEM Criterion

The proposed estimator is compared with some already existing estimators such as OLS, Ridge estimators in the sense
of MSEM.

Comparison between & 515 and ®g_pca

Recall the MSEM of the OLS estimator as

Aps= A" X yas:

MSEM( X g1s)= 02471 ... (40)

Equation (35) can be written as:

MSEM(g_pca)= 02N 2N/N, AZA + NN AFA — L [NEN APA - 1 dle 1)
where N= (A + k1), N; =X7Z,, Ar =ZrZr, A=XX

Therefore the difference between (39) and (40) is given as
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MSEM( aols )-MSEM( 0{R7PCA) — DaRfPCA

Zols

- ?A*- O NTNINATA + NN ATA — 1NN AFA — 1 e
_oPAL PNTININAA + NINATA - 1 e [NINAA = 1]

- ?[AT-NTNINAA L NN AA - 1 [ [NIN ATA -] (42)

Where k>0 is the individual biasing parameter of Hoerl and Kennard (1970), Fayose and Ayinde (2019), Kibria and
Lukman (2020) and Chand and Kibra (2024).

A

The proposed estimator Qn_pca is superior to Aos if and only if
_ _ _ — 1 _ _

a’[N N A, A - |]02[A '~ N7NIN,A, 1AT [N 'NLA, A — I]a <1

Proof: By considering the dispersion matrix difference

D rer _ o2 |AT— N2NIN A, A

g 2 TN NN Ay B (43)
=trace ( DzOTS_PCA
p
-> diag (Do )
i=1
£ -1 -2 1 -1
_o* Y diag [AT = NZNIN A, A
i=1
Zp:d' 1 n2a. i
=o’ lag | —— —— | 44
’ i=1 ﬂ,i (ﬂl +k)2/1ir i (44)

Where ﬂ.i is the diag (X’X), nr=diag (X Z, )and /Iir =diag (Z 'z, )

2 2
The difference will be positive definite if and only if (ﬂ” k) A, - nf, A;” > 0.1t can be observed that

242
2
(ﬂ,i + k) /1” - nir/ii will be greater than zero if k > 0. Hence by Lemma II the proof is completed

Comparison between & and &g_pcp

The bias vector covariance matrix and MSEM of & estimator defined as

Goo= (A+kD) 7wy (45)
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EG.)= (A+KD)"Aa L (46)
Var(a)= o2 (A+KID) T Aa ... (47)
MSEM (4,.)= O (A+KI)AHKD) ™ +K*(A+kI) aa (A+kI) (48)
MSEM (@p.)=0? N'AN '+ k*N'aa!N* L (49)

Therefore the difference between (48) and (49)

MSEM (G ) - MSEM (& g_pca)

02N"ANY — 62N 2NIN, A71A + k2N~ taaN~1 — [N"IN,A71A — 1Y N"IN, A4 — [Na'a
(e (50)

Let k>0, the estimator dR,pCAis superior to ¢ if and only if{ MSEM (&, ) - MSEM (dR,pCA)}>O,if and only if =
o> (NA = NNIN,ATA) + KON YN = [NINAPA - NN AR — 1 e <1
Proof

Considering the dispersion matrix difference between &, and @g_pca

Dazrer oo (N?A—-NNIN A'A)

............ (51)
, -1
:02(A+kl)ZA—GZ(A+kI)Z(X'Zr)Z(ZrZrJ A
, -1
=o-2(A+kI)Z[A—(er)z[zrzr) A}
2 Ao 0 p
=0 dlag (ﬂ,i-i-k)z (/‘Li+k)2ﬂ,ir LT (52)

QRr_pca 2 2
DRE will be pdf if and only if 4;4; — N > 0 for k > 0. Hence it can be observed that 44, —N; >0,

therefore by Lemma II the proof is completed

2.3.3. Determination of Biasing Parameter k.

Finding an appropriate ridge shrinkage or biasing parameter has been the bone of contention in the study of ridge
regression. This is because the parameter may either be non - stochastic or may depend on the observed or real - life
data set. Therefore, the shrinkage parameter k employed in this study are stated in equation (13), (14), (15), (16) and
(17) as well as the proposed ones (20) to (23) respectively.

For practical purpose the MSE of &g_pca can be written as
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MSE( g _pca)=trace {MSEM (Xp_pca)l s (53)

P
= > diag (MSEM (Qp_pca)) o (54)

1=1

.
- Y diag [o2N NN, AA + [N 2NZAZAZ 2NN A + 137 ]

i=1

2 2,2
N, ﬂ’i & N, A% nir/li A2

MSE (g _pca) = GZZ +Z

— -~ +114,
(A +K)2A, | (4 +K)2PA% (4 +K)A,

5 P n, A © 1 n A% — (4 + KA, (N A+ (4 + KA
a =02 + ir i ir ir’ti i ir 0'2_2
MSE (Tr-pea) le B AT Py le (4 + K)2 2% |
(O (55)

Where niris the eigen value of Nr =X Zr'/ﬁtIr is the eigen value of matrix Z;Zrﬂr is the eigen value of the design

matrix XX, p is the number of the concomitant variables and k is the generalized biasing parameter which is the
individual biasing parameter which were earlier defined in (13) to (17), (19) to (23) respectively.

3. Simulation Procedure and Design

A Monte Carlo simulation study is performed in the study to show the performance of the proposed estimator over some
existing estimators in literature.

Consider the linear regression of the form:

Ve = ﬁo + Blth + ﬁth2+.. . +Bpti + Ut ............ (56)

wheret=1,2,..,n;,p=3,6U; = N(O, 02),X“-'t =1,2,...,n;i=1,2,.,p are fixed concomitant variables. The concomitant
variables are generated using the following procedure (Lukman and Ayinde 2017; Fayose and Ayinde, 2019; Fayose et
al, 2023a):

1

Xo=Q=p°)?Zy+pLy (57)

where Z,; is independent standard normal distribution with mean zero and constant variance, p is the correlation
between any two concomitant variables and p is the number of concomitant variables. The error terms U; were

generated to be normally distributed with mean zero and variance 2. U t is the error term. The study used Monte Carlo

simulation to conduct the experiment with varying parameters such as sample sizes (n = 10, 20, 30, 50, 100 and 250);
level of multicollinearity (p = 0, 0.8, 0.9, 0.95, 0.99, 0.999). In the study, 0% values were 1, 25 and 100. E(yi) = expected

value of the regression under consideration. Y; ::BO +,81X1 +ﬂ2X2+ﬂgx3+ui for p = 3 and

Yi = By + BiXy + ByXy + ByXy + BXy + BsXs + PgXe +Uifor p = 6. When p = 3; B, = 0.1550494, B, = 06162552,

B, = 0.5311015, B; = 0.5604644. When p = 6; B, = 0.09867566, B, = 0.47436618, B, = 0.35373615, B; = 0.41280825,
B, = 0.32653190,
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Bs = 0.40968387, B, = 0.44185515. The experiment was repeated 1000 times (number of replication). The

performances of the estimators were compared using the Mean Square Error criterion. For any estimator ,B , MSE is
defined as follows:

1000

MSE(2) :ﬁzlg@, S (58)

where ,Bij is ith element of the estimator f in the jth replication which gives the estimate of ﬂi . :Bi are the true value of

the parameter previously mentioned. Estimator with the minimum MSE was considered best. The statistical package R
Studio was used to write the program that accommodated Twenty - One (21) estimators (OLS, PCA estimator,
Generalized Ridge estimators, Liu estimator, Ridge - PCA estimators). Out of the Twenty — One (21) estimators, thirteen
(13) are proposed estimators, eight (8) are existing estimators. At a particular level of error variance, multicollinearity
and sample size, R studio package gave MSE values. These were recorded 180 times (Multicollinearity levels x Error
Variance x Sample Sizes x Number of Regressors types = 5 x 3 x 6 x 2) accordingly. Statistical Package for the Social
Sciences (SPSS 25.0) was further used to rank the estimators on the basis of their MSE values. Estimators with high MSE
were sorted and removed using SPSS software. The MSE obtained by each estimator was ranked for each degree of
multicollinearity and error variance. The degrees of multicollinearity and error variance were tallied to determine the
number of times each estimator had the smallest MSE (rank 1 and 2). An estimator is optimal or most efficient if it has
the most counts; the mode.

4., Results and Discussion

We represented the outcomes visually and in Tables.
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Figure 1 Component Bar Chart showing frequency of counts at which MSE is minimum at p = 3 and p = 6 for OLS and
PCA estimation methods

Figure 1 shows that PCARCK2ZMIN is the best (most efficient) estimator when dealing with the model's multicollinearity
problem. i.e. proposed one - parameter ridge estimator (minimum version of Chand and Kibria 2 (2024) with Principal
Component estimator) followed by combined estimator nicknamed (PCARCK1) i.e. proposed one - parameter ridge
estimator with PCA (Chand and Kibria 1 (2024) with Principal Component estimator) and combined estimator
nicknamed (PCARCK2) i.e. proposed one - parameter ridge estimator with PCA (Chand and Kibria 2 (2024) with
Principal Component estimator) respectively. Meanwhile the best estimator without Principal Component estimator is
the proposed one - parameter ridge estimator i.e. minimum version of Chand and Kibria 2 (2024) followed by existing
one - parameter ridge estimator of Chand and Kibria 1 (2024) and existing one - parameter ridge estimator of Fayose
and Ayinde (2019) respectively.
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Figure 2 Multiple Bar chart showing performance of the estimators at different sample sizes when p=3 and p = 6.

From Figure 2, proposed (PCARCK2MIN) i.e. minimum version of Chand and Kibra 2 (2024) with Principal Component
estimator performed efficiently across all sample sizes at p = 3 and at p = 6 respectively. Similarly, proposed (PCARCK1)
i.e. Chand and Kibra 1 (2024) with Principal Component estimator performed efficiently across all sample sizesatp =3
but when p = 6, it performed across all sample sizes expect at sample size 30.

The simulation results are available on request but for ease of comparison the results are summarized in Table 1.

Table 1 Number of Times Each Estimator Produced Minimum MSE when counted over levels of Multicollinearity and
Error Variance

p | Estimators Sample Size (n)
10 | 20 | 30 | 50 | 100 | 250 | TOTAL | RANK
PCARCK1 15|15 (15| 15|15 |15 |90 1st
PCARCK2 15|15 |15|15| 14 |15 |89 2nd
3 PCARCK2MIN | 15 (15| 15| 15|15 |15 |90 1st
PCARHKMED |10 (101|109 |7 2 48 3rd
PCARKLFMAX [0 |0 |0 |4 |5 3 12 6th
PCARKLHM 0 [0 |0 |O |O 0 0 7th
PCARKLMED |3 |4 |4 |1 |0 5 17 5th
RCK1 3 |4 |5 |6 |8 10 | 36 4th
RCK2MIN 10|10 (10|19 |7 2 48 3rd
RFA 2 |1 |1 (0 |3 5 12 6t
RKLHM 0 [0 |0 |O |O 0 0 7th
PCARCK1 1515|14 | 15|15 |15 |89 2nd
6 | PCARCK2 1515|114 |13 |14 |15 |86 3rd
PCARCK2MIN | 15| 15| 1515|115 |15 |90 1st
PCARHKMED |2 |2 |1 |9 |9 4 27 6th
PCARKLFMAX [0 [0 |O [0 |0 0 0 11th
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PCARKLHM 1 12 |2 (2 |0 0 7 9th
PCARKLMED |3 |3 |4 |4 |5 7 26 7th
RCK1 3 |3 |4 |6 |7 9 32 5th
RCKZMIN 1010|109 |9 4 52 4th
RFA 2 (2 |1 |1 |1 3 10 8th
RKLHM 0 (0 (1 |0 |O 0 1 10th

NOTE: Estimator with highest frequency at each sample size is boldedatp=3 and p = 6.

From Table 1, when p = 3, it is observed that the best or most efficient estimator are PCARCK1 i.e. proposed one -
parameter ridge estimator with PCA (Chand and Kibria 1 (2024) with Principal Component estimator) and PCACK2MIN
i.e. proposed one - parameter ridge estimator with PCA (minimum version of Chand and Kibria 2 (2024) with Principal
Component estimator) followed by PCARCK2 i.e. proposed one - parameter ridge estimator with PCA (Chand and Kibria
2 (2024) with Principal Component estimator) respectively. But when p = 6, the most efficient estimator is PCACKZMIN
i.e. proposed one - parameter ridge estimator with PCA (minimum version of Chand and Kibria 2 (2024) with Principal
Component estimator) followed by PCARCK1 i.e. proposed one - parameter ridge estimator with PCA (Chand and Kibria
1 (2024) with Principal Component estimator) respectively. The top best or most efficient estimators are the proposed
ones.

5. Conclusion

This study addressed the multicollinearity problem in Gaussian linear regression by proposing robust hybrid estimators
that combine Ridge Regression with Principal Component Analysis (PCA). Four novel ridge parameters were developed
and integrated with PCA to form advanced Ridge - PCA estimators. Through extensive Monte Carlo simulations, the
proposed estimators especially PCARCK2MIN consistently outperformed traditional methods like OLS, Ridge, PCA, and
Liu estimators by achieving the lowest Mean Squared Error (MSE). These results highlight the efficiency and reliability
of the hybrid approach. The study demonstrates that combining regularization with dimensionality reduction enhances
model performance and offers a strong solution for multicollinear regression analysis.
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