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Abstract 

This study tackles the persistent issue of multicollinearity in Gaussian linear regression which undermines the efficiency 
of Ordinary Least Squares (OLS) estimators. While Ridge Regression and Principal Component Analysis (PCA) are 
common remedies, they have limitations in terms of bias control and interpretability. To address this, the research 
proposes hybrid Ridge – PCA estimators using four newly developed ridge parameters combined with PCA. A Monte 
Carlo simulation evaluated 21 estimators including OLS, Ridge, PCA, and Liu estimators under varying sample sizes, 
error variances and multicollinearity levels using Mean Squared Error (MSE) as the performance metric. Results show 
that a newly hybrid estimator consistently outperformed other proposed and existing estimators by achieving the 
lowest MSE. The study demonstrates the strength of integrating regularization with dimensionality reduction to 
improve regression under multicollinearity.  

Keywords: Multicollinearity; Ridge Regression; Principal Component Estimator; Hybrid Estimators; Monte Carlo 
Simulation 

1. Introduction

The linear regression model is a statistical method that analyzes the relationship between an effect or dependent 
variable and one or more independent variables helping to explain or predict outcomes (Fayose et al., 2023b; Aladesuyi 
et al., 2025). The model is simply defined as follows: 

,........22110 iikkiii xxxy  +++++= i = 1,…..,n,  ………..    (1) 

where iy is the effect variable, 1ix ,…, ikx are the concomitant variables, 0 , 
1 , …, k are the unknown parameters 

to be estimated, i denotes the disturbance term and it is assumed to be normally distributed with mean zero and 

constant variance .
2  The model is simply a simple regression model when there is one concomitant variable. The 

parameters in model (1) are mostly estimated by the Method of Least Squares (MLS). MLS is generally preferred and 
possesses some humbly properties when the assumptions of the linear regression models are intact, this makes the 
model to be classical (Owolabi et al., 2022 and Dawoud et al., 2022). These include linear relationship among the 
concomitant variables; the disturbance terms must come from a Gaussian distribution and has non scattered variance 
and others (Chatterjee and Hadi, 1977). In reality most of the aforementioned assumptions are normally violated. For 
instance, literature has shown that linear relationship often exists among concomitant variables which are termed 
multicollinearity (Fayose and Ayinde 2019; Shewa and Ugwuowo, 2022a). Multicollinearity is a phenomenon where 
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two or more concomitant variables are highly correlated in a Gaussian linear regression (Neter, et al. 1996; Fayose et 
al, 2023a and Aladesuyi et al., 2025). There is tendency for perfect or strong or moderate linear dependency among the 
concomitant variables (Shewa and Ugwuowo, 2022a; Shewa and Ugwuowo, 2022b). The method of least squares is 
unbiased but inefficient when there is linear relationship among the concomitant variables (Gujarati et al., 2012). It 
yields regression coefficients whose absolute values are too large and whose signs may actually reverse with negligible 
changes in the data (Buonaccorsi, 1996). If the multicollinearity is not perfect but high, the estimated coefficients can 
become unstable and highly sensitive to slight changes in the model leading to inflated standard errors and misleading 
inferences (Belseley et al., 1980; Fayose and Ayinde, 2019). Consequently, reliable interpretation of the model 
parameters may be compromised undermining the credibility of the results derived from such analysis. The pursuit of 
effective techniques to mitigate the adverse effects of multicollinearity is of paramount importance in both theoretical 
and applied statistics.  

Among the existing methods or approaches proposed to address or handle multicollinearity are Ridge Regression, 
Principal Component Analysis (PCA) among others. Both Ridge and PCA have emerged as prominent methodologies 
(Hoerl and Kennard, 1970; Jolliffe, 1986). Ridge regression offers a regularization technique that modifies the Ordinary 
least squares (OLSE) estimation process by introducing a penalty term (k) to the loss function thus allowing for the 
shrinkage of coefficient estimates towards zero (Hoerl and Kennard, 1970, Fayose et al., 2023b). The ridge parameter 
(k) counteracts the inflation of variances associated with multicollinearity effectively enhancing the stability of the 
estimates and producing more reliable and responsive predictions.  

In contrast, PCA serves as a dimensionality reduction technique that transforms the original correlated variables into a 
set of uncorrelated variables often called principal components (Jolliffe, 2002). By focusing on the principal components 
that explain the most variance in the data, PCA can help circumvent multicollinearity problem by ensuring that 
regression model utilizes orthogonal predictors. While both Ridge regression and PCA have demonstrated utility in 
addressing multicollinearity, each method presents notable limitations. Ridge regression while effective in controlling 
for multicollinearity does not completely eliminate correlation among predictors, it merely diminishes the variability of 
the coefficient estimates. Moreover, the choice of penalty parameter (k) can significantly influence the model’s 
performance necessitating careful cross – validation (Tikhonov, 1963). Meanwhile, PCA while adept at reducing 
dimensionality and addressing multicollinearity transforms the original predictors into a new set of components that 
may lack interpretability in the context of the original variables posing challenges for practical application and insight 
derivation (Jolliffe, 1986).  

To harness the strengths of both Ridge regression and PCA while mitigating their respective limitations, the concept of 
hybrid or combined estimators has been introduced by different authors in recent literature. These combined 
estimators integrate Ridge parameter (k) with PCA estimator to form or create a more robust framework or new hybrid 
estimator to tackle multicollinearity in Gaussian linear regression model. Wang et al., (2013) proposed a hybrid 
estimator that combines Ridge parameter (k) with PCA to improve parameter estimation in high dimensional settings. 
Their approach demonstrated a significant reduction in mean squared error (MSE) compared to standard methods. 
Other authors that have utilized these combined approaches are Zou and Hastie (2005), Buhlmann and Van de Geer 
(2011); Chang and Yang (2012); Zhang and Li (2015); Huang and Wang (2018) and Lukman, et al., (2020) among others. 
The paper intends to comprehensively propose new ridge parameter k’s and combine them with PCA to form new 
hybrid estimators to resolve the problem of multicollinearity within the Gaussian linear regression framework through 
simulation studies. We compared the estimators’ performance to that of some existing techniques. Section 2 contains 
the methodology. Section 3 presents the simulation design, while Section 4 presents simulation results and while 
Section 5 is the conclusion.  

1.1. Existing and Proposed Estimators 

The matrix form of a linear regression model is defined as: 

eXy +=                         ………………(2) 

Where y is the vector of response variables, X is 𝑛 × 𝑝 design matrix of concomitant variables or predictor 𝛽 is 𝑝 × 1 

true vector or regression coefficients e ~ N ( )2
,0   is the disturbance which is normally distributed with mean 0 and 

variance 2 . 
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1.2. The Ridge Estimator 

The Ordinary Least Square estimator is defined as: YXS
I

OLS

1ˆ −
=

 
             …………       (3) 

where  

)( XXS
I

=                                         …………             (4) 

The ridge regression estimator is the mostly used estimators in literature for handling multicollinearity problem. The 
Generalized Ridge Estimator is defined as: 

YXkIS
I

GRRE

1
)(
−

+=        …………       (5) 

where S is a p x p product matrix of concomitant variables, 
1

X Y is a p x 1 vector of the product of effect and 

concomitant variables, k = diagonal (
1k ,

2k ,…, k p ), ki ≥ 0, i = 1, 2,..., p. k is a non – negative constant called biasing or 

ridge parameter. When k = 0, equation (5) returns to OLS estimator (Fayose and Ayinde, 2019; Kibria and Lukman, 
2020; Fayose et al., 2023a). In this paper, we considered these selected ‘k’ parameters: Hoerl and Kennard (1975), 
Fayose and Ayinde (2019), Kibria and Lukman (2020), Chand and Kibria (2024a), Chand and Kibria (2024b) and also 
proposed four new ridge parameters respectively. 

2. Principal Component Estimator 

The study considered PCA method to also handle multicollinearity in the model and also combined both ridge parameter 
and PCA method to form hybrid estimator to handle multicollinearity in the model. 

PCA transforms the original predictors x into a new set of uncorrelated variables called principal components.  

YXVSVVVPCR

11
)( =
−             …………        (6) 

‘S’ is defined in equation (4). 

Let the covariance matrix of X be: 

XXC = and the eigen value decomposition of C gives VVDC =     ………… (7) 

where V is 𝑝 × 𝑝 matrix of eigen vectors (Principal Components) and D = diag ( )
p .,.....,, 21  is the diagonal matrix of 

the eigen values. 

The data matrix X is transformed into principal components 𝑍 = 𝑋𝑉. 

where Z is the new transformed data matrix of uncorrelated principal components 

By regressing y on the principal components Z instead of X; is given as: 

𝑦 = 𝑍𝛾 +e   ………… (8) 

Where 𝛾 = 𝑉′β 

The ordinary least square (OLS) estimator for 𝛾 in this model is given as;  

𝛾̂ 
( ) YZZZ =

−1

   ………… (9) 
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By substituting Z = XV, therefore the PCA estimator of 𝛽 denoted as PCA̂   is defined as:  

PCA̂   = V𝛾̂ = ( ) yZZZV
'1' −

   ………… (10) 

Where ZZ  = DXVXV =
''  

Therefore the PCA estimator in equation (10) can further be defined as: 

PCA̂
 
= ( ) yXVDV

''1−

    ………… (11) 

2.1. Some Alternative Ridge Estimators to OLSE 

The ridge estimator is defined as: 

))(ˆ 1
yZkIZZRIDGE
+=

−     ………… (12) 

where k is the non – negative tuning parameter. Different means of deriving k exists in the literature. These include: 

Following (Hoerl and Kennard, 1975), k is given by: 

)
ˆ

()(ˆ
2

2

)(

i

M

imedian medianHKkKGRHK



== , i = 1, 2, 3, p  ………… (13) 

where 2̂  = 
pn

e
n

i

i

−


=1

2

is the mean square error from the MLS, i  is the ith element of the vector, and is the regression 

coefficient from the MLS. 

Following (Fayose and Ayinde, 2019), k is given by: 
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where .,...,3,2,1)( pMin iMin == 
 

Following (Kibria and Lukman, 2020), k is given by: 




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       …………        (15) 

Following (Chand and Kibria, 2024), k is given by: 

)1(

11
ˆ)(ˆ n

p

i pCKkKGRCK
+

==                       …………    (16) 
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Following (Chand and Kibria, 2024), k is given by: 

),max(ˆ)(ˆ )11()1(

22

pn
p

i ppCKkKGRCK
++

==               …………      (17) 

2.1.1. The Liu Estimator 

The Liu estimator proposed by Liu (1993) combined the Stein estimator with Ordinary Ridge Regression estimator to 
handle multicollinearity. The Liu estimator of   is defined below as 

OLS

III

L dIXXIXX  ˆ)()(ˆ ++=
−

         0 < d < 1.     ………… (18) 

Where d = 



















+



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 2
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2

ˆˆ

ˆ
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i
i







   ………… (19) 

Where d = ( )( iddiag and is a diagonal matrix of the biasing parameter. The Liu estimator can return to OLS when d = 

1. 

2.2. Proposed Ridge Estimators 

For the ridge parameter whose estimators are defined in (13), (14), (15), (16) and (17), the concept of different forms 
by Lukman and Ayinde (2017) and Fayose and Ayinde (2019) was introduced based on minimum (MI), maximum (MA) 
and Median (MD) of eigen values (𝜆𝑖) of XIX of the design matrix of the regression model. 

Consequently, in this paper, we proposed some new ridge parameters whose estimators are defined below: 

RIDGE ESTIMATOR (PROPOSED 1) 

),min(ˆ)2(ˆ )11()1( pn
p

i ppCKk
++

=                      …………             (20) 

i.e. The minimum version of Chand and Kibria (2024) 

RIDGE ESTIMATOR (PROPOSED 2) 
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               …………            (21) 

i.e. the Harmonic mean version of Kibria and Lukman (2020) 

RIDGE ESTIMATOR (PROPOSED 3) 
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                         …………                  (22) 

i.e. the median version of Kibria and Lukman (2020) 

RIDGE ESTIMATOR (PROPOSED 4 
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
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
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           …………        (23) 

Fixed maximum of Kibria and Lukman (2020) 

2.3. Derivation of the Properties of PCA with Ridge Estimator 

Ayinde et al. (2020) derived a new approach of Principal Component Analysis (PCA) estimator as an alternative to: 

PCA̂ = 𝑉𝐷−1𝑉′𝑋′𝑌                          …………      (24) 

This is defined as 

PCA̂  = (𝑋′𝑋)−1𝑋′𝑦̂𝑟                                   …………          (25) 

Where 
rŷ  is the predicted variable by regressing y on the r-principal component defined as  

( ) yXZZZy rrrr
=

−1
ˆ                                 …………             (26) 

Such that rZ = rXT  

where Tr  is the r – principal component and T is the orthogonal matrix. Therefore, combination of PCA with ridge 
estimator is defined as: 

𝜷̂𝑹−𝑷𝑪𝑨 = (𝑿′𝑿 + 𝒌𝜤)−𝟏𝑿′𝒁𝒓(𝒁𝒓
′𝒁𝒓)−𝟏𝑿′𝒚                      …………          (27) 

Where k is the biasing parameter for individual biasing parameter of Hoerl and Kennard (1975), Fayose and Ayinde 
(2019), Kibra and Lukman (2020), Chand and Kibra (2024a) and Chand and Kibra (2024b) 

2.3.1. Properties of PCAR−̂  

Mean of the PCAR−̂  

To compute the mean of PCAR−̂ , the expected value of equation (3) is taking 

E(𝛽̂𝑅−𝑃𝐶𝐴) = 𝐸[(𝑋′𝑋 + 𝑘𝛪)−1𝑋′𝑍𝑟(𝑍𝑟
′𝑍𝑟)−1𝑋′𝑦]                        …………      (28) 
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E(e) = 0 and  =)(E  

Therefore  

(𝐸(𝛽̂𝑅−𝑃𝐶𝐴) = (𝑋′𝑋 + 𝑘𝛪)−1𝑋′𝑍𝑟(𝑍𝑟
′𝑍𝑟)−1𝑋′. 𝑋𝛽          …………               (29) 

Variance of the PCAR−̂  

Var ( )ˆ
PCAR− = ( )( ) 







 
−− −−−− )ˆ(ˆ)ˆ(ˆ

PCARPCARPCARPCAR EEE        …………       (30) 

=𝐸 [
[(𝑋′𝑋 + 𝑘𝛪)−1𝑋′𝑍𝑟(𝑍𝑟

′𝑍𝑟)−1𝑋′𝑦 − (𝑋′𝑋 + 𝑘𝛪)−1𝑋′𝑍𝑟(𝑍𝑟
′𝑍𝑟)−1𝑋′𝑋𝛽]

[(𝑋′𝑋 + 𝑘𝛪)−1𝑋′𝑍𝑟(𝑍𝑟
′𝑍𝑟)−1𝑋′𝑦 − (𝑋′𝑋 + 𝑘𝛪)−1𝑋′𝑍𝑟(𝑍𝑟

′𝑍𝑟)−1𝑋′𝑋𝛽]′.
]                …………      (31) 

Further expansion of (30) gives equation (31) 

)ˆ( PCARVar − = 2  ( ) XXZZZXkXX rrr .)(
2

22






 

+
−

−

          …………             (32) 

Bias of the PCAR−̂  

Bias( PCAR−̂ )= ( )  −−PCARE ˆ  

                        ( ) .
1

1
 −





 

+=
−

−
XXZZZXkXX rrr

 

= ((𝑋′𝑋 + 𝑘𝛪)−1𝑋′𝑍𝑟(𝑍𝑟
′𝑍𝑟)−1𝑋′𝑋 − 𝛪)𝛽                  …………                (33) 

Mean Squared Error Matrix of PCAR−̂  

MSEM ( PCAR−̂ )= ( )
PCARVar −̂ )+Bias2( PCAR−̂ )            …………  (34) 

MSEM( PCAR−̂ ) =  𝜎2(𝑋′𝑋 + 𝑘𝐼)−2(𝑋′𝑍𝑟)2(𝑍𝑟
′ 𝑍𝑟)−1𝑋′𝑋 + [(𝑋′𝑋 + 𝑘𝐼)−1𝑋′𝑍𝑟(𝑍𝑟

′ 𝑍𝑟)−1𝑋′𝑋 − 𝐼]2𝛽2                                                                                                                                                             

(                      …………        (35) 

Also equation (35) can still be written as: 

𝑀𝑆𝐸𝑀(𝛽̂𝑅−𝑃𝐶𝐴) = 𝜎2(𝑋′𝑋 + 𝑘𝐼)−2(𝑋′𝑍𝑟)′(𝑋′𝑍𝑟)(𝑍𝑟
′ 𝑍𝑟)−1𝑋′𝑋 + [(𝑋′𝑋 + 𝑘𝐼)−1𝑋′𝑍𝑟(𝑍𝑟

′ 𝑍𝑟)−1𝑋′𝑋 − 𝐼]′ 
[(𝑋′𝑋 + 𝑘𝐼)−1𝑋′𝑍𝑟(𝑍𝑟

′ 𝑍𝑟)−1𝑋′𝑋 − 𝐼]𝛽′𝛽             …………    (36) 

Recall the general form of linear regression model in matrix form as given in (2) 

eXy +=                                                                                                                                            

Therefore the canonical form of equation (2) can be written as: 

𝑦 = 𝑊𝑋 + 𝑒               …………   (37) 
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Where  QXQW == ,  and Q is the orthogonal matrix whose columns indicate the eigen vectors of the design 

matrix .XX  Hence, ( )
pdiagXQXQ  ,...,, 21==  where 0...21  p  are the ordered eigen values 

.XX  The OLS estimator in equation (2) can be defined as:  

𝛼̂𝑜𝑙𝑠 =∧−1 𝑋′𝑦                     …………    (38) 

Thus the canonical form of equation (26) is 

( ) yXZZZXk rrrPCAR






 

+=
−

−

−

1
1

̂          …………    (39) 

For the convenience of establishing the statistical properties of PCAR−̂ , the following Lemmas will be useful. 

Lemma I: Let F be a positive definite matrix such that F > 0 and let  be some vectors then; 

0− F  if and only if .1
1

 −  F (Trenkler and Tontenbury,1990) 

Lemma II : Let ijj A=̂  for j=1,2 be two competing estimators of . . Also suppose that  

( ) ( ) 0ˆˆ
21 −=  CovCovD  where ( ) ( )21

ˆˆ  andCovCov  are the covariance matrix of 21
ˆˆ  and  

Therefore ( ) ( ) 0ˆˆ
21 −=  MSEMMSEMD  if and only if   12

12

11

2

2 +
−

aaaDa  where ( )1̂MSEM = 

( )1̂Cov +
'

iiaa  

Such that ia =Bias ( ) ( ) IAiXi −=ˆ  

2.3.2. The Superiority of the Proposed Estimator in the Sense of MSEM Criterion 

The proposed estimator is compared with some already existing estimators such as OLS, Ridge estimators in the sense 
of MSEM. 

Comparison between ols̂  and PCAR−̂  

Recall the MSEM of the OLS estimator as 

ols̂ = yX 
−1 as: 

MSEM( ols̂ )= 𝜎2𝛬−1     …………   (40) 

Equation (35) can be written as: 

MSEM( PCAR−̂ )=     1'1111122
INNINNNNN rrrrrrr −−+ −−−−−−

    (41) 

where N= ( )kI+ , rN  = 
rZX  , ,

'

rrr ZZ= XX =  

Therefore the difference between (39) and (40) is given as 
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MSEM( ols̂ )-MSEM( PCAR−̂ ) = PCAR

ols
D −
   

= 12 −
 -      111111122

INNINNNNN rrrrrrr −−+ −−−−−−
 

=
12 −

 -    INNINNNNN rrrrrrr −−+ −−−−−− 11'11122   

=      INNINNNNN rrrrrrr −−+−
−−−−−−− 111111212             …………   (42) 

Where k>0 is the individual biasing parameter of Hoerl and Kennard (1970), Fayose and Ayinde (2019), Kibria and 
Lukman (2020) and Chand and Kibra (2024). 

The proposed estimator PCAR−̂  is superior to ols̂  if and only if 

      1
11

111212
'11

−−−
−−

−−−−−−  INNNNNINN rrrrrrr  

Proof: By considering the dispersion matrix difference 

PCAR

ols
D −

 =  −
−−− 11212

rrr NNN             …………   (43) 

                =trace (
PCAR

ols
D −

 ) 

               =
=

p

i

diag
1

(
PCAR

OLSD
−

 ) 

              = 2 
=

p

i

diag
1

 −
−−− 1121

rrr NNN  

= 2 
=

p

i

diag
1 ( )

p

iiri

ir

i k

n

1

2

2
1

=












+
−






             ………… (44) 

Where i  is the diag (X’X), nr =diag ( )andZX r
 ir =diag ( )rZZ   

The difference will be positive definite if and only if  ( ) iri k 
2

+ - 
22

iirn  > 0. It can be observed that  

( ) iri k 
2

+ - 
22

iirn   will be greater than zero if k > 0. Hence by Lemma II the proof is completed 

Comparison between 
RE̂  and PCAR−̂  

The bias vector covariance matrix and MSEM of 
RE̂ estimator defined as  

RE̂ = ( ) 1−
+ kI W’y                           …………    (45) 
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)ˆ( REE  = ( ) +
−1

kI                         …………    (46) 

Var )ˆ( RE = 2 ( ) +
−1

kI   …………   (47) 

MSEM )ˆ( RE = ( ) ( ) ( ) ( ) 112112 −−−−
+++++ kIkIkkIkI         …………   (48) 

MSEM )ˆ( RE = 2 111211 −−−−
+ NNkNN                       …………  (49) 

Therefore the difference between (48) and (49) 

MSEM (
RE̂ ) – MSEM ( PCAR−̂ ) 

𝜎2𝑁−1𝛬𝑁−1 − 𝜎2𝑁−2𝑁𝑟
1𝑁𝑟𝛬𝑟

−1𝛬 + 𝑘2𝑁−1𝛼𝛼1𝑁−1 − [𝑁−1𝑁𝑟𝛬𝑟
−1𝛬 − 𝐼]1[𝑁−1𝑁𝑟𝛬𝑟

−1𝛬 − 𝐼]𝛼′𝛼                                                                                                                                              
(                            …………  (50) 

Let k>0, the estimator PCAR−̂ is superior to 
RE̂ if and only if{ MSEM (

RE̂ ) – MSEM ( PCAR−̂ )}>0,if and only if = 

    1)(
11111111211222

−−−+−
−−−−−−−−−  INNINNNNkNNNN rrrrrrr  

Proof 

Considering the dispersion matrix difference between 
RE̂ and PCAR−̂  

PCAR

RED −
= )(

11222
−

−−−

rrr NNNN           ………… (51) 

               = ( ) ( ) ( ) 




 

+−+
−

−−
1

22222
' rrr ZZZXkIkI   

               = ( ) ( ) 













 

−+
−

−
1

222

rrr ZZZXkI  

=
2 diag

( )

p

iiri

ir

i

i

k

n

k
1

2

2

2
)(

=










+
−

+ 






               …………  (52) 

 
PCAR

RED −
will be pdf if and only if 0

2
− iriri n for k > 0. Hence it can be observed that 0

2
− iriri n , 

therefore by Lemma II the proof is completed 

2.3.3. Determination of Biasing Parameter ‘k’. 

Finding an appropriate ridge shrinkage or biasing parameter has been the bone of contention in the study of ridge 
regression. This is because the parameter may either be non – stochastic or may depend on the observed or real – life 
data set. Therefore, the shrinkage parameter k employed in this study are stated in equation (13), (14), (15), (16) and 
(17) as well as the proposed ones (20) to (23) respectively.  

For practical purpose the MSE of PCAR−̂  can be written as 
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MSE( PCAR−̂ )= trace {MSEM ( PCAR−̂ )}                          …………     (53) 

= 
=

P

I

diag
1

 (MSEM ( PCAR−̂ ))                         …………  (54) 

= 
=

P

i

diag
1

  21122221

1

22 ˆ2 irrrrrr INNNNNNN  +−+
−−−−−−
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(                                                           …………      (55) 

Where nir is the eigen value of irrr ZXN ,= is the eigen value of matrix rrr ZZ ,  is the eigen value of the design 

matrix X1X, p is the number of the concomitant variables and k is the generalized biasing parameter which is the 
individual biasing parameter which were earlier defined in (13) to (17), (19) to (23) respectively.  

3. Simulation Procedure and Design 

A Monte Carlo simulation study is performed in the study to show the performance of the proposed estimator over some 
existing estimators in literature. 

Consider the linear regression of the form: 

𝑦𝑡 = 𝛽0 + 𝛽1𝑋𝑡1 + 𝛽2𝑋𝑡2+. . . +𝛽𝑝𝑋𝑡𝑝 + 𝑈𝑡    …………  (56) 

where t = 1, 2, …, n; p = 3, 6, 𝑈𝑡 ≈ 𝑁(0, 𝜎2), 𝑋𝑡𝑖,t = 1,2,…,n; i = 1,2,...,p are fixed concomitant variables. The concomitant 
variables are generated using the following procedure (Lukman and Ayinde 2017; Fayose and Ayinde, 2019; Fayose et 
al., 2023a): 

tptiti ZZX  +−= 2

1

2
)1(     ………… (57) 

where 𝑍𝑡𝑖  is independent standard normal distribution with mean zero and constant variance, 𝜌 is the correlation 
between any two concomitant variables and p is the number of concomitant variables. The error terms Ut  were 

generated to be normally distributed with mean zero and variance 𝜎2. tU is the error term. The study used Monte Carlo 

simulation to conduct the experiment with varying parameters such as sample sizes (n = 10, 20, 30, 50, 100 and 250); 
level of multicollinearity (ρ = 0, 0.8, 0.9, 0.95, 0.99, 0.999). In the study, σ2 values were 1, 25 and 100. E(yi) = expected 

value of the regression under consideration. ii uxxxy ++++= 3322110   for p = 3 and 

ii uxxxxxxy +++++++= 6655443322110  for p = 6. When p = 3;  β0 = 0.1550494, β1 = 0.6162552, 

β2 = 0.5311015, β3 = 0.5604644. When p = 6;  β0 = 0.09867566, β1 = 0.47436618, β2 = 0.35373615, β3 = 0.41280825, 
β4 = 0.32653190, 
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 β5  = 0.40968387, β6  = 0.44185515. The experiment was repeated 1000 times (number of replication). The 

performances of the estimators were compared using the Mean Square Error criterion. For any estimator ̂ , MSE is 

defined as follows: 

( )
= =

−=
p

i j

iijMSE
1

1000

1

2
ˆ

1000

1
)ˆ(      ………… (58) 

where ij̂  is ith element of the estimator β in the jth replication which gives the estimate of i . i  are the true value of 

the parameter previously mentioned. Estimator with the minimum MSE was considered best. The statistical package R 
Studio was used to write the program that accommodated Twenty – One (21) estimators (OLS, PCA estimator, 
Generalized Ridge estimators, Liu estimator, Ridge – PCA estimators). Out of the Twenty – One (21) estimators, thirteen 
(13) are proposed estimators, eight (8) are existing estimators. At a particular level of error variance, multicollinearity 
and sample size, R studio package gave MSE values. These were recorded 180 times (Multicollinearity levels x Error 
Variance x Sample Sizes x Number of Regressors types = 5 x 3 x 6 x 2) accordingly. Statistical Package for the Social 
Sciences (SPSS 25.0) was further used to rank the estimators on the basis of their MSE values. Estimators with high MSE 
were sorted and removed using SPSS software. The MSE obtained by each estimator was ranked for each degree of 
multicollinearity and error variance. The degrees of multicollinearity and error variance were tallied to determine the 
number of times each estimator had the smallest MSE (rank 1 and 2). An estimator is optimal or most efficient if it has 
the most counts; the mode. 

4. Results and Discussion 

We represented the outcomes visually and in Tables. 

 

Figure 1 Component Bar Chart showing frequency of counts at which MSE is minimum at p = 3 and p = 6 for OLS and 
PCA estimation methods 

Figure 1 shows that PCARCK2MIN is the best (most efficient) estimator when dealing with the model's multicollinearity 
problem. i.e. proposed one – parameter ridge estimator (minimum version of Chand and Kibria 2 (2024) with Principal 
Component estimator) followed by combined estimator nicknamed (PCARCK1) i.e. proposed one – parameter ridge 
estimator with PCA (Chand and Kibria 1 (2024) with Principal Component estimator) and combined estimator 
nicknamed (PCARCK2) i.e. proposed one – parameter ridge estimator with PCA (Chand and Kibria 2 (2024) with 
Principal Component estimator) respectively. Meanwhile the best estimator without Principal Component estimator is 
the proposed one – parameter ridge estimator i.e. minimum version of Chand and Kibria 2 (2024) followed by existing 
one – parameter ridge estimator of Chand and Kibria 1 (2024) and existing one – parameter ridge estimator of Fayose 
and Ayinde (2019) respectively. 
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Figure 2 Multiple Bar chart showing performance of the estimators at different sample sizes when p = 3 and p = 6. 

From Figure 2, proposed (PCARCK2MIN) i.e. minimum version of Chand and Kibra 2 (2024) with Principal Component 
estimator performed efficiently across all sample sizes at p = 3 and at p = 6 respectively. Similarly, proposed (PCARCK1) 
i.e. Chand and Kibra 1 (2024) with Principal Component estimator performed efficiently across all sample sizes at p = 3 
but when p = 6, it performed across all sample sizes expect at sample size 30. 

The simulation results are available on request but for ease of comparison the results are summarized in Table 1.  

Table 1 Number of Times Each Estimator Produced Minimum MSE when counted over levels of Multicollinearity and 
Error Variance 

p Estimators Sample Size (n) 

10 20 30 50 100 250 TOTAL RANK 

 

 

3 

PCARCK1 15 15 15 15 15 15 90 1st  

PCARCK2 15 15 15 15 14 15 89 2nd  

PCARCK2MIN 15 15 15 15 15 15 90 1st 

PCARHKMED 10 10 10 9 7 2 48 3rd 

PCARKLFMAX 0 0 0 4 5 3 12 6th 

PCARKLHM 0 0 0 0 0 0 0 7th  

PCARKLMED 3 4 4 1 0 5 17 5th   

RCK1 3 4 5 6 8 10 36 4th   

RCK2MIN 10 10 10 9 7 2 48 3rd  

RFA 2 1 1 0 3 5 12 6th 

RKLHM 0 0 0 0 0 0 0 7th  

 

6 

 

PCARCK1 15 15 14 15 15 15 89 2nd 

PCARCK2 15 15 14 13 14 15 86 3rd  

PCARCK2MIN 15 15 15 15 15 15 90 1st 

PCARHKMED 2 2 1 9 9 4 27 6th  

PCARKLFMAX 0 0 0 0 0 0 0 11th  
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PCARKLHM 1 2 2 2 0 0 7 9th  

PCARKLMED 3 3 4 4 5 7 26 7th  

RCK1 3 3 4 6 7 9 32 5th  

RCK2MIN 10 10 10 9 9 4 52 4th  

RFA 2 2 1 1 1 3 10 8th 

RKLHM 0 0 1 0 0 0 1 10th  

NOTE: Estimator with highest frequency at each sample size is bolded at p = 3 and p = 6. 

From Table 1, when p = 3, it is observed that the best or most efficient estimator are PCARCK1 i.e. proposed one – 
parameter ridge estimator with PCA (Chand and Kibria 1 (2024) with Principal Component estimator) and PCACK2MIN 
i.e. proposed one – parameter ridge estimator with PCA (minimum version of Chand and Kibria 2 (2024) with Principal 
Component estimator) followed by PCARCK2 i.e. proposed one – parameter ridge estimator with PCA (Chand and Kibria 
2 (2024) with Principal Component estimator) respectively. But when p = 6, the most efficient estimator is PCACK2MIN 
i.e. proposed one – parameter ridge estimator with PCA (minimum version of Chand and Kibria 2 (2024) with Principal 
Component estimator) followed by PCARCK1 i.e. proposed one – parameter ridge estimator with PCA (Chand and Kibria 
1 (2024) with Principal Component estimator) respectively. The top best or most efficient estimators are the proposed 
ones. 

5. Conclusion  

This study addressed the multicollinearity problem in Gaussian linear regression by proposing robust hybrid estimators 
that combine Ridge Regression with Principal Component Analysis (PCA). Four novel ridge parameters were developed 
and integrated with PCA to form advanced Ridge – PCA estimators. Through extensive Monte Carlo simulations, the 
proposed estimators especially PCARCK2MIN consistently outperformed traditional methods like OLS, Ridge, PCA, and 
Liu estimators by achieving the lowest Mean Squared Error (MSE). These results highlight the efficiency and reliability 
of the hybrid approach. The study demonstrates that combining regularization with dimensionality reduction enhances 
model performance and offers a strong solution for multicollinear regression analysis.   
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