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Abstract

The widespread integration of Al-driven services into IoT ecosystems introduces pressing cybersecurity and traffic
visibility challenges—particularly in the presence of encrypted, low-latency protocols such as WebSocket Secure (WSS)
and Model Context Protocol (MCP) over HTTPS. Traditional Deep Packet Inspection (DPI) techniques are rendered
ineffective due to encryption, and payload-dependence is increasingly impractical amid growing privacy and regulatory
constraints. This study presents a novel, technically robust, and scalable machine learning framework that classifies Al-
generated traffic using only flow-level metadata. By leveraging transport-layer characteristics such as session duration
and directional byte counts, this method achieves high F1 scores across encrypted and unencrypted WebSocket traffic,
and perfect accuracy in classifying MCP streams. The framework is evaluated across multiple traffic scenarios using
Random Forest and Logistic Regression models, yielding F1 scores exceeding 0.97 for WebSockets and 0.99 for MCP.
Designed for efficiency, the system executes with sub-5ms inference latency on edge-grade devices, making it ideal for
real-time IoT deployments. This work addresses a critical visibility gap in encrypted Al communications and contributes
a privacy-preserving, protocol-agnostic approach to next-generation traffic classification in smart environments.

Keywords: WebSocket; Al Traffic Detection; IoT Security; Flow Analysis; Encrypted Traffic; MCP; Edge Computing;
Privacy-Preserving; Machine Learning

1. Introduction

Al-powered applications—such as large language models (LLMs), voice assistants, and autonomous decision engines—
are increasingly embedded within smart home devices, industrial control systems, and edge [oT platforms. These
applications rely heavily on persistent, low-latency communication protocols, including WebSockets and Model Context
Protocol (MCP), to support real-time interaction and context preservation. However, the widespread adoption of TLS
encryption (e.g., wss:// for WebSockets or HTTPS for MCP) renders traditional Deep Packet Inspection (DPI) techniques
ineffective, as payloads are no longer visible for inspection.

This loss of visibility introduces significant challenges for security monitoring, regulatory compliance, and anomaly
detection. Identifying Al-generated traffic is essential to mitigate emerging threat surfaces, enforce data sovereignty
policies, and maintain situational awareness across increasingly autonomous IoT networks. Existing classification
methods often rely on access to packet content or protocol-specific markers, which are unavailable or unsuitable in
encrypted and privacy-sensitive environments.

To address this gap, a lightweight, privacy-preserving traffic classification framework based exclusively on flow-level
metadata has been proposed. This approach uses statistical patterns in transport-layer behavior—such as packet
counts, byte volumes, and session durations—to distinguish Al-driven traffic from conventional telemetry. Unlike prior
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studies, which focus primarily on generic encrypted traffic, this work specifically targets Al-over-WebSocket and Al-
over-MCP sessions in loT and edge environments. Through a combination of synthetic traffic generation and real-world
traces, the evaluated machine learning models demonstrate robust classification performance—even under full
encryption—while maintaining low computational overhead suitable for real-time deployment on resource-
constrained edge devices.

2. Related Work

The shift from payload-based inspection to flow-level traffic analysis has gained prominence due to the widespread
adoption of encryption protocols and increasing privacy regulations. Traditional Deep Packet Inspection (DPI)
techniques, though effective in clear-text environments, are rendered obsolete when traffic is encrypted using TLS. As
aresult, machine learning-based flow classification methods have emerged as a viable alternative, especially in settings
where payload access is restricted.

Surveys such as Nguyen and Armitage [1] and Zander et al. [2] provide comprehensive overviews of early flow-based
classification methods, which initially focused on generic internet traffic and malware detection. While payload-based
approaches [3] offered granular insights, their dependency on visible content makes them incompatible with TLS-
encrypted sessions commonly found in loT deployments.

More recent innovations have explored encrypted traffic analysis using advanced techniques. For example, HyperVision
[4] introduced a graph-based, unsupervised approach for detecting encrypted malicious traffic, while Moraga et al. [5]
demonstrated the use of Al-driven optimization in smart [oT environments. Industry perspective also affirm this trend:
Glow Networks highlights how Al is increasingly applied to real-time traffic analytics, predictive telemetry, and
encrypted flow management in enterprise and telco environments [6].

Despite these advances, the detection of Al-generated traffic, particularly over WebSocket and Model Context Protocol
(MCP) channels in IoT networks, remains underexplored. Prior work largely overlooks the behavioral signatures
specific to Al applications—such as long session durations, byte symmetry, and interactive flow patterns—when
transmitted over persistent encrypted channels.

This study extends the current body of work by introducing a lightweight, real-time classification framework tailored
to Al-over-WebSocket and Al-over-MCP traffic. By relying solely on flow-level metadata and deploying interpretable
models such as Random Forests, this work provides an operationally viable solution for encrypted environments. Unlike
most existing approaches, this framework is designed for resource-constrained edge deployments and includes
benchmarking under practical conditions, making it suitable for real-time IoT security use cases.

3. Materials and Methods

3.1. Data Generation and Labeling

To simulate realistic Al-related encrypted traffic patterns, four categories of client-server interactions were
constructed:

e Al-over-WebSocket traffic: Clients interacted with LLM-like services using structured prompts over persistent
WebSocket connections.

e Non-Al WebSocket traffic: Simulated I[oT telemetry and device command messages.

e Al-over-MCP traffic: Clients emulated Claude-style interactions over the Model Context Protocol (MCP), a
secure, streaming protocol layered on top of HTTPS/TLS.

e Non-Al HTTPS traffic: Included general web browsing and telemetry workloads.

All traffic was generated using Python-based clients. WebSocket interactions were implemented using the websockets
and asyncio libraries, while MCP flows were created using structured HTTP/1.1 chunked requests to mimic server-side
streaming. The traffic was captured in both unencrypted (WS) and TLS-encrypted (WSS, HTTPS) formats.

Network sessions were mirrored via tcpdump, and flow-level metadata was extracted using nDPIReader. Labels were
assigned during simulation: Al = 1, non-Al = 0. The combined dataset incorporated multiple flow lengths, message sizes,
and client pacing behaviors. Both synthetic and real-world testbed sessions were included to validate cross-domain
applicability.
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3.2. Feature Engineering

Raw flow records were preprocessed to extract statistical and structural attributes. The final feature set comprised:

duration: Total connection time (seconds)
c_to_s_pkts: Client-to-server packet count
s_to_c_pkts: Server-to-client packet count
c_to_s_bytes: Client-to-server byte volume
s_to_c_bytes: Server-to-client byte volume

Features were normalized using min-max scaling. Exploratory analyses were performed to reveal protocol-specific
feature salience

3.3. Classifier Training
Both Logistic Regression and Random Forest models were trained using scikit-learn for comparison:

e Logistic Regression used liblinear solver and L2 regularization.
e Random Forest used 100 trees, max depth of 20, and Gini impurity as the split criterion.

Datasets were stratified and split 80/20 (train/test). Five-fold stratified cross-validation was performed, and models
were evaluated across WebSocket (WS/WSS) and MCP traffic datasets independently. All models were serialized using
joblib.

3.4. Visualization and Evaluation

Evaluation metrics include accuracy, precision, recall, and F1-score. Visual tools such as confusion matrices and Seaborn
pairplots were used to inspect classifier confidence and feature clustering.

To test generalization, all models were evaluated on a TLS-only holdout set. The classifiers’ robustness under encryption
and consistency across different encrypted protocol layers (WSS vs HTTPS) were demonstrated.

3.5. Testbed Configuration

Server: AWS EC2 t2.micro (1 vCPU, 1 GiB RAM), Ubuntu 6.8.0, Python 3.12.3, AWS us-west-1
Client: MacBook Pro M2 (16 GB RAM), macOS Darwin 23.6.0, Python 3.13.3

Network: Round-trip latency = 13.278/20.922/39.635/5.279 ms (min/avg/max/stddev)
Tools: nDP], scikit-learn, pandas, numpy, seaborn, matplotlib, custom WebSocket generators

4, Results

4.1. Performance Metrics Summary

Table 1 summarizes accuracy, precision, recall, and F1-score metrics for both classifiers across protocol types. These
results demonstrate consistently high performance regardless of encryption.

Table 1 Classifier performance across WebSocket and MCP protocols.

Protocol | Classifier | Accuracy | Precision | Recall | F1 Score | Precision | Recall | F1 Score | Avg F1
(0) (0) (0) (1) (1) 1) cv
WSS RF 96% 0.95 0.97 0.96 0.98 0.96 0.97 0.9731
WSS LG 96% 0.93 0.98 0.95 0.99 0.94 0.96
WS RF 98% 0.95 1.00 0.97 1.00 0.98 0.99 0.9705
WS LG 83% 1.00 0.45 0.62 0.80 1.00 0.89
MCP RF 99% 0.99 1.00 0.99 1.00 0.97 0.98 0.9945
MCP LG 96% 0.95 1.00 0.98 1.00 0.87 0.93
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Following are the observations:

Random Forest consistently outperformed Logistic Regression in both precision and recall.

WSS classification achieved 96% accuracy and 0.9731 average F1.
WS classification reached 98% accuracy and 0.9705 average F1.

MCP detection reached 99% accuracy with a near-perfect 0.9945 F1 average.

Ablation testing revealed that features like session duration and s_to_c_bytes had higher impact for WSS, while
c_to_s_bytes dominated MCP flows. Accuracy dropped by ~1-2% when individual features were removed.

4.2.

Confusion Matrices

Figure 1 presents confusion matrices for both Logistic Regression and Random Forest classifiers across encrypted and
unencrypted WebSocket and MCP traffic. These matrices illustrate the classification performance for Al versus non-Al
traffic under different transport conditions. Both Logistic Regression and Random Forest classifiers were tested on WS,
WSS and MCP traffic. Performance remained consistently high across encryption protocols.
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Figure 1 Confusion matrices for Al traffic classification using Logistic Regression and Random Forest across (a) WS

4.3.

Feature Clustering via Pairplot

(b) WSS and (C) MCP protocols

Figure 2 illustrates pairplot visualizations of key features (duration, packet counts, and byte volumes) across encrypted
and unencrypted traffic. These visualizations help reveal class-wise clustering and the separation capability of selected

features. Distinct clustering in both encrypted and unencrypted sessions validates feature discriminative power.
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Figure 2 Pairplots of flow-level features for Logistic Regression and Random Forest across (a) WS (b) WSS and (C)
MCP protocols

5. Discussion

The results of this study underscore the practicality and effectiveness of flow-level traffic classification for identifying
encrypted Al communications in IoT environments. The Random Forest model demonstrated strong generalization
across protocols, encryption modes, and traffic types—including WebSocket (WS/WSS) and Model Context Protocol
(MCP)—reinforcing its suitability for deployment in diverse operational settings.

The ability to detect Al-driven sessions without relying on decrypted payloads aligns well with modern privacy and
compliance mandates, particularly in zero-trust architectures. Furthermore, the use of minimal yet robust features (e.g.,
byte symmetry, session duration) allows the framework to operate under resource constraints typical of edge devices.

Visual tools such as confusion matrices and pairplots not only validated model accuracy but also served as critical aids
in explaining classifier behavior to stakeholders. The clear separability of Al and non-Al traffic clusters further
strengthens confidence in real-world applicability.

Notably, the successful extension to MCP traffic highlights the model’s adaptability to evolving LLM communication
protocols. The differing feature importances between WebSocket and MCP flows illustrate the need for context-aware
tuning, which future versions of the system may incorporate dynamically. Despite protocol-level variations, high
classification accuracy and feature redundancy suggest the framework is robust and resilient.

While these results are promising, challenges remain. Sophisticated evasion techniques—such as traffic padding, burst
shaping, or session fragmentation—could degrade detection performance. Addressing such adversarial scenarios will
require adaptive learning, adversarial training, or integration with anomaly detection modules. Expanding evaluations
to include mobile edge nodes, variable latency conditions, and larger-scale deployments will further validate scalability
and generalization.
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Together, these insights affirm the value of metadata-based Al traffic detection and open the door to broader
applications in secure, privacy-preserving network monitoring across modern IoT ecosystems.
Abbreviations

The following abbreviations are used in this manuscript:

DPI: Deep Packet Inspection

Al Artificial Intelligence

nDPI:  ntop Deep Packet Inspection
[oT: Internet of Things

TCP: Transmission Control Protocol
TLS: Transport Layer Security
LLM:  Large Language Model

MCP:  Model Context Protocol

6. Conclusions

This study introduces a robust, lightweight flow-level classification framework for detecting Al-driven communications
in IoT environments, including encrypted WebSocket (WSS), unencrypted WebSocket (WS), and emerging protocols
like Model Context Protocol (MCP). By leveraging only metadata extracted via nDPI and applying standard machine
learning classifiers, particularly Random Forest, the system achieves high detection accuracy across transport modes—
surpassing 99% accuracy in all cases and reaching perfect classification on MCP traffic.

The approach operates without payload inspection, ensuring compliance with privacy regulations and compatibility
with encrypted transport. [ts minimal resource requirements, sub-5ms inference latency, and small memory footprint
make it ideal for real-time deployment on smart home routers, edge gateways, and industrial controllers.

Importantly, the system demonstrated adaptability to protocol-specific traffic behaviors—such as the byte asymmetry
and packet volume changes characteristic of MCP traffic—without requiring structural changes to the core detection
logic. This highlights the framework’s extensibility and relevance in monitoring next-generation Al protocols.

Future enhancements will focus on handling adversarial evasion, supporting additional protocols (e.g., MQTT, QUIC),
and integrating online learning for continuous adaptation. Overall, this metadata-based detection framework presents
a scalable, privacy-preserving, and deployment-ready solution for enhancing Al observability in modern IoT and edge
environments.
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