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Abstract 

The widespread integration of AI-driven services into IoT ecosystems introduces pressing cybersecurity and traffic 
visibility challenges—particularly in the presence of encrypted, low-latency protocols such as WebSocket Secure (WSS) 
and Model Context Protocol (MCP) over HTTPS. Traditional Deep Packet Inspection (DPI) techniques are rendered 
ineffective due to encryption, and payload-dependence is increasingly impractical amid growing privacy and regulatory 
constraints. This study presents a novel, technically robust, and scalable machine learning framework that classifies AI-
generated traffic using only flow-level metadata. By leveraging transport-layer characteristics such as session duration 
and directional byte counts, this method achieves high F1 scores across encrypted and unencrypted WebSocket traffic, 
and perfect accuracy in classifying MCP streams. The framework is evaluated across multiple traffic scenarios using 
Random Forest and Logistic Regression models, yielding F1 scores exceeding 0.97 for WebSockets and 0.99 for MCP. 
Designed for efficiency, the system executes with sub-5ms inference latency on edge-grade devices, making it ideal for 
real-time IoT deployments. This work addresses a critical visibility gap in encrypted AI communications and contributes 
a privacy-preserving, protocol-agnostic approach to next-generation traffic classification in smart environments. 
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1. Introduction

AI-powered applications—such as large language models (LLMs), voice assistants, and autonomous decision engines—
are increasingly embedded within smart home devices, industrial control systems, and edge IoT platforms. These 
applications rely heavily on persistent, low-latency communication protocols, including WebSockets and Model Context 
Protocol (MCP), to support real-time interaction and context preservation. However, the widespread adoption of TLS 
encryption (e.g., wss:// for WebSockets or HTTPS for MCP) renders traditional Deep Packet Inspection (DPI) techniques 
ineffective, as payloads are no longer visible for inspection. 

This loss of visibility introduces significant challenges for security monitoring, regulatory compliance, and anomaly 
detection. Identifying AI-generated traffic is essential to mitigate emerging threat surfaces, enforce data sovereignty 
policies, and maintain situational awareness across increasingly autonomous IoT networks. Existing classification 
methods often rely on access to packet content or protocol-specific markers, which are unavailable or unsuitable in 
encrypted and privacy-sensitive environments. 

To address this gap, a lightweight, privacy-preserving traffic classification framework based exclusively on flow-level 
metadata has been proposed. This approach uses statistical patterns in transport-layer behavior—such as packet 
counts, byte volumes, and session durations—to distinguish AI-driven traffic from conventional telemetry. Unlike prior 
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studies, which focus primarily on generic encrypted traffic, this work specifically targets AI-over-WebSocket and AI-
over-MCP sessions in IoT and edge environments. Through a combination of synthetic traffic generation and real-world 
traces, the evaluated machine learning models demonstrate robust classification performance—even under full 
encryption—while maintaining low computational overhead suitable for real-time deployment on resource-
constrained edge devices. 

2. Related Work 

The shift from payload-based inspection to flow-level traffic analysis has gained prominence due to the widespread 
adoption of encryption protocols and increasing privacy regulations. Traditional Deep Packet Inspection (DPI) 
techniques, though effective in clear-text environments, are rendered obsolete when traffic is encrypted using TLS. As 
a result, machine learning-based flow classification methods have emerged as a viable alternative, especially in settings 
where payload access is restricted. 

Surveys such as Nguyen and Armitage [1] and Zander et al. [2] provide comprehensive overviews of early flow-based 
classification methods, which initially focused on generic internet traffic and malware detection. While payload-based 
approaches [3] offered granular insights, their dependency on visible content makes them incompatible with TLS-
encrypted sessions commonly found in IoT deployments. 

More recent innovations have explored encrypted traffic analysis using advanced techniques. For example, HyperVision 
[4] introduced a graph-based, unsupervised approach for detecting encrypted malicious traffic, while Moraga et al. [5] 
demonstrated the use of AI-driven optimization in smart IoT environments. Industry perspective also affirm this trend: 
Glow Networks highlights how AI is increasingly applied to real-time traffic analytics, predictive telemetry, and 
encrypted flow management in enterprise and telco environments [6].  

Despite these advances, the detection of AI-generated traffic, particularly over WebSocket and Model Context Protocol 
(MCP) channels in IoT networks, remains underexplored. Prior work largely overlooks the behavioral signatures 
specific to AI applications—such as long session durations, byte symmetry, and interactive flow patterns—when 
transmitted over persistent encrypted channels.  

This study extends the current body of work by introducing a lightweight, real-time classification framework tailored 
to AI-over-WebSocket and AI-over-MCP traffic. By relying solely on flow-level metadata and deploying interpretable 
models such as Random Forests, this work provides an operationally viable solution for encrypted environments. Unlike 
most existing approaches, this framework is designed for resource-constrained edge deployments and includes 
benchmarking under practical conditions, making it suitable for real-time IoT security use cases. 

3. Materials and Methods 

3.1. Data Generation and Labeling 

To simulate realistic AI-related encrypted traffic patterns, four categories of client-server interactions were 
constructed: 

● AI-over-WebSocket traffic: Clients interacted with LLM-like services using structured prompts over persistent 
WebSocket connections. 

● Non-AI WebSocket traffic: Simulated IoT telemetry and device command messages. 
● AI-over-MCP traffic: Clients emulated Claude-style interactions over the Model Context Protocol (MCP), a 

secure, streaming protocol layered on top of HTTPS/TLS. 
● Non-AI HTTPS traffic: Included general web browsing and telemetry workloads. 

All traffic was generated using Python-based clients. WebSocket interactions were implemented using the websockets 
and asyncio libraries, while MCP flows were created using structured HTTP/1.1 chunked requests to mimic server-side 
streaming. The traffic was captured in both unencrypted (WS) and TLS-encrypted (WSS, HTTPS) formats. 

Network sessions were mirrored via tcpdump, and flow-level metadata was extracted using nDPIReader. Labels were 
assigned during simulation: AI = 1, non-AI = 0. The combined dataset incorporated multiple flow lengths, message sizes, 
and client pacing behaviors. Both synthetic and real-world testbed sessions were included to validate cross-domain 
applicability.  
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3.2. Feature Engineering 

Raw flow records were preprocessed to extract statistical and structural attributes. The final feature set comprised: 

● duration: Total connection time (seconds) 
● c_to_s_pkts: Client-to-server packet count 
● s_to_c_pkts: Server-to-client packet count 
● c_to_s_bytes: Client-to-server byte volume 
● s_to_c_bytes: Server-to-client byte volume 

Features were normalized using min–max scaling. Exploratory analyses were performed to reveal protocol-specific 
feature salience 

3.3. Classifier Training 

Both Logistic Regression and Random Forest models were trained using scikit-learn for comparison: 

● Logistic Regression used liblinear solver and L2 regularization. 
● Random Forest used 100 trees, max depth of 20, and Gini impurity as the split criterion. 

Datasets were stratified and split 80/20 (train/test). Five-fold stratified cross-validation was performed, and models 
were evaluated across WebSocket (WS/WSS) and MCP traffic datasets independently. All models were serialized using 
joblib. 

3.4. Visualization and Evaluation 

Evaluation metrics include accuracy, precision, recall, and F1-score. Visual tools such as confusion matrices and Seaborn 
pairplots were used to inspect classifier confidence and feature clustering. 

To test generalization, all models were evaluated on a TLS-only holdout set. The classifiers’ robustness under encryption 
and consistency across different encrypted protocol layers (WSS vs HTTPS) were demonstrated. 

3.5. Testbed Configuration 

● Server: AWS EC2 t2.micro (1 vCPU, 1 GiB RAM), Ubuntu 6.8.0, Python 3.12.3, AWS us-west-1 
● Client:  MacBook Pro M2 (16 GB RAM), macOS Darwin 23.6.0, Python 3.13.3 
● Network: Round-trip latency = 13.278/20.922/39.635/5.279 ms (min/avg/max/stddev) 
● Tools: nDPI, scikit-learn, pandas, numpy, seaborn, matplotlib, custom WebSocket generators 

4. Results 

4.1. Performance Metrics Summary 

Table 1 summarizes accuracy, precision, recall, and F1-score metrics for both classifiers across protocol types. These 
results demonstrate consistently high performance regardless of encryption. 

Table 1 Classifier performance across WebSocket and MCP protocols. 

Protocol Classifier Accuracy Precision  

(0) 

Recall 

(0) 

   F1 Score 

  (0) 

Precision 

(1) 

Recall 

(1) 

F1  Score 

(1) 

Avg  F1 

CV 

WSS RF 96% 0.95 0.97 0.96 0.98 0.96 0.97 0.9731 

WSS LG 96% 0.93 0.98 0.95 0.99 0.94 0.96  

WS RF 98% 0.95 1.00 0.97 1.00 0.98 0.99 0.9705 

WS LG 83% 1.00 0.45 0.62 0.80 1.00 0.89  

MCP RF 99% 0.99 1.00 0.99 1.00 0.97 0.98 0.9945 

MCP LG 96% 0.95 1.00 0.98 1.00 0.87 0.93  
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Following are the observations: 

● Random Forest consistently outperformed Logistic Regression in both precision and recall. 
● WSS classification achieved 96% accuracy and 0.9731 average F1. 
● WS classification reached 98% accuracy and 0.9705 average F1. 
● MCP detection reached 99% accuracy with a near-perfect 0.9945 F1 average. 

Ablation testing revealed that features like session duration and s_to_c_bytes had   higher impact for WSS, while 
c_to_s_bytes dominated MCP flows. Accuracy dropped by ~1-2% when individual features were removed. 

4.2. Confusion Matrices 

Figure 1 presents confusion matrices for both Logistic Regression and Random Forest classifiers across encrypted and 
unencrypted WebSocket and MCP traffic. These matrices illustrate the classification performance for AI versus non-AI 
traffic under different transport conditions. Both Logistic Regression and Random Forest classifiers were tested on WS, 
WSS and MCP traffic. Performance remained consistently high across encryption protocols. 

 

Figure 1 Confusion matrices for AI traffic classification using Logistic Regression and Random Forest across (a) WS 
(b) WSS and (C) MCP protocols 

4.3. Feature Clustering via Pairplot 

Figure 2 illustrates pairplot visualizations of key features (duration, packet counts, and byte volumes) across encrypted 
and unencrypted traffic. These visualizations help reveal class-wise clustering and the separation capability of selected 
features. Distinct clustering in both encrypted and unencrypted sessions validates feature discriminative power. 
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Figure 2 Pairplots of flow-level features for Logistic Regression and Random Forest across (a) WS (b) WSS and (C) 
MCP protocols 

5. Discussion 

The results of this study underscore the practicality and effectiveness of flow-level traffic classification for identifying 
encrypted AI communications in IoT environments. The Random Forest model demonstrated strong generalization 
across protocols, encryption modes, and traffic types—including WebSocket (WS/WSS) and Model Context Protocol 
(MCP)—reinforcing its suitability for deployment in diverse operational settings. 

The ability to detect AI-driven sessions without relying on decrypted payloads aligns well with modern privacy and 
compliance mandates, particularly in zero-trust architectures. Furthermore, the use of minimal yet robust features (e.g., 
byte symmetry, session duration) allows the framework to operate under resource constraints typical of edge devices. 

Visual tools such as confusion matrices and pairplots not only validated model accuracy but also served as critical aids 
in explaining classifier behavior to stakeholders. The clear separability of AI and non-AI traffic clusters further 
strengthens confidence in real-world applicability. 

Notably, the successful extension to MCP traffic highlights the model’s adaptability to evolving LLM communication 
protocols. The differing feature importances between WebSocket and MCP flows illustrate the need for context-aware 
tuning, which future versions of the system may incorporate dynamically. Despite protocol-level variations, high 
classification accuracy and feature redundancy suggest the framework is robust and resilient. 

While these results are promising, challenges remain. Sophisticated evasion techniques—such as traffic padding, burst 
shaping, or session fragmentation—could degrade detection performance. Addressing such adversarial scenarios will 
require adaptive learning, adversarial training, or integration with anomaly detection modules. Expanding evaluations 
to include mobile edge nodes, variable latency conditions, and larger-scale deployments will further validate scalability 
and generalization. 
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Together, these insights affirm the value of metadata-based AI traffic detection and open the door to broader 
applications in secure, privacy-preserving network monitoring across modern IoT ecosystems. 

Abbreviations 

The following abbreviations are used in this manuscript: 

DPI: Deep Packet Inspection 

AI: Artificial Intelligence 

nDPI: ntop Deep Packet Inspection 

IoT: Internet of Things 

TCP: Transmission Control Protocol 

TLS: Transport Layer Security 

LLM: Large Language Model 

MCP: Model Context Protocol 

6. Conclusions 

This study introduces a robust, lightweight flow-level classification framework for detecting AI-driven communications 
in IoT environments, including encrypted WebSocket (WSS), unencrypted WebSocket (WS), and emerging protocols 
like Model Context Protocol (MCP). By leveraging only metadata extracted via nDPI and applying standard machine 
learning classifiers, particularly Random Forest, the system achieves high detection accuracy across transport modes—
surpassing 99% accuracy in all cases and reaching perfect classification on MCP traffic. 

The approach operates without payload inspection, ensuring compliance with privacy regulations and compatibility 
with encrypted transport. Its minimal resource requirements, sub-5ms inference latency, and small memory footprint 
make it ideal for real-time deployment on smart home routers, edge gateways, and industrial controllers. 

Importantly, the system demonstrated adaptability to protocol-specific traffic behaviors—such as the byte asymmetry 
and packet volume changes characteristic of MCP traffic—without requiring structural changes to the core detection 
logic. This highlights the framework’s extensibility and relevance in monitoring next-generation AI protocols. 

Future enhancements will focus on handling adversarial evasion, supporting additional protocols (e.g., MQTT, QUIC), 
and integrating online learning for continuous adaptation. Overall, this metadata-based detection framework presents 
a scalable, privacy-preserving, and deployment-ready solution for enhancing AI observability in modern IoT and edge 
environments. 

Compliance with ethical standards 

Acknowledgments 

The author would like to acknowledge and extend appreciation to the contributors of the open-source nDPI project, 
whose tooling was instrumental in the flow-level metadata extraction process. 

Disclosure of conflict of interest 

The author declares no conflicts of interest. 

Author Contributions 

Conceptualization, methodology, software, formal analysis, investigation, data curation, writing - original draft 
preparation, review and editing, visualization, project administration [Dinoja Padmanabhan].  

Funding 

This research received no external funding. 



World Journal of Advanced Research and Reviews, 2025, 27(01), 1302-1308 

1308 

Data Availability Statement 

The datasets and source code utilized in this study are publicly accessible here. 

References 

[1] Nguyen, T.T.T.; Armitage, G. A survey on web traffic classification. IEEE Commun. Surv. Tutor. 2015, 17, 1201–
1232. https://doi.org/10.1109/COMST.2015.2400551 

[2] Zander, S.; Nguyen, T.T.T.; Armitage, G. A survey of techniques for internet traffic classification using machine 
learning. IEEE Commun. Surv. Tutor. 2006, 10, 56–76. https://doi.org/10.1109/COMST.2006.5342290 

[3] Finsterbusch, M.; Richter, C.; Rocha, E.; Müller, H.; Hanssgen, K. A survey of payload-based traffic classification 
approaches. Comput. Netw. 2014, 76, 1–15. https://doi.org/10.1016/j.comnet.2014.11.002 

[4] Fu, C.; Li, Q.; Xu, K. Detecting Unknown Encrypted Malicious Traffic in Real Time via Flow Interaction Graph 
Analysis. arXiv 2023, arXiv:2301.13686. https://doi.org/10.48550/arXiv.2301.13686 

[5] Moraga, Á.; Rojas, D.; Álvarez, E.; Sánchez, C.; Martín, F. AI-Driven UAV and IoT Traffic Optimization. Drones2025, 
9, 248. https://doi.org/10.3390/drones9040248 

[6] Glow Networks. AI and Network Traffic Analytics. 2023. Available online: 
https://www.glownetworks.com/blog/ai-and-network-traffic-analytics (accessed on 17 May 2025). 

Supplementary Materials 

The following supporting information can be downloaded here.  

Figure 1: Confusion matrices for AI traffic classification using Logistic Regression and Random Forest across (a) WS (b) 
WSS and (c) MCP protocols.;  

Figure 2: Pairplots of flow-level features for Logistic Regression and Random Forest across (a) WS (b) WSS and (C) MCP 
protocols, Table 1: Classifier performance across WebSocket and MCP protocols. 

https://github.com/dpadman/websocket-classifier
https://github.com/dpadman/websocket-classifier/blob/main/visualize_results.ipynb

