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Abstract 

In recent years, the use of lasers has increased in many applications, including highly sensitive applications such as 
tissue lasers. These applications require high precision due to their direct interaction with biological tissue. They also 
require a thorough understanding of the physical properties of the laser and its effects on biological tissue. 
Understanding laser parameters, selecting the most important and influential parameters, and developing a system 
capable of evaluating the classification process are essential to ensure the most appropriate use of lasers in clinical 
applications. This study presents a new, high-quality dataset, publicly available to researchers, divided into two parts: 
the synthetic dataset, which simulates ideal laser conditions, and the realistic dataset, which simulates realistic laser 
conditions in terms of some noise. The dataset, both synthetic and realistic, contains many important properties of laser-
tissue interactions, such as wavelength, pulse duration, thermal conductivity, and other features. The features are 
classified relative to the laser beam to select the best and most effective features for the tissue using XGBoost and SHAP 
before being used with classifiers. The dataset provided high accuracy when evaluated using six different classifiers: 
three modern classifiers and three traditional classifiers. This study aims to present a comprehensive workflow, from 
data generation to results acquisition and analysis.   
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1. Introduction

The interaction of lasers with tissues and the introduction of lasers into clinical medicine and dentistry have been among 
the most discussed topics of the last two decades, with the increasing use of lasers in various applications, including 
highly sensitive applications, such as tissue interaction and even in the detection and treatment of cancer cells [1]. 

In this type of research, it is crucial to consider the optical and physical properties of lasers and biological tissues. 
Understanding the basic concepts of both tissue biology and laser physics ensures optimal therapeutic results. 

Tissues constantly interact with light, and light helps stimulate tissues to create many important elements for the body, 
such as melanin production or vitamin D synthesis [2]. 

Lasers are one of the light sources, specifically monochromatic light sources, which emit a single, predetermined 
wavelength. Wavelength is one of the most important characteristics of lasers when working with biological tissues. 
Wavelength affects the distance the laser can penetrate into tissue, which absorbs the wavelength by special 
photoreceptors (chromophores) such as hemoglobin, oxyhemoglobin, and melanin [3]. 
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Tissues exhibit different responses to the type of laser beam they receive and to the parameters that affect it, such as 
wavelength, pulse duration, energy density, thermal conductivity, flux, and the beam pattern. Therefore, this study 
ensures that all of these parameters are accurately captured in a new dataset that has been created and made publicly 
available to researchers [4]. The dataset, which was created entirely synthetically using Python, contains two parts. The 
first is the synthetic dataset, which simulates a laser under ideal conditions, without any distortion or noise, which is 
unlikely in real-life applications. However, it was created for comparison with the second dataset, the realistic dataset. 
In the realistic dataset, noise was added at certain rates to ensure that the radiation was similar to that of laser beams 
in practical experiments, ensuring the quality of the models being tested. 

All features were initially tested using XGBoost and SHAP for both datasets, to analyze the importance of each feature 
for the classification process and to analyze the reasons for the differences in values between the two datasets using 
XGBoost and SHAP. 

To evaluate the results, six models were used: three state-of-the-art models (XGBoost, deep neural network, and 
LightGBM), and three traditional models (Random Forest, Support Vector Machines, and Logistic Regression). A large 
number of models were tested to compare the new models with models that have demonstrated high accuracy in 
previous research, as well as to ensure the accuracy of the dataset when used with different modeling methods. 

2. Literature Review 

With the proliferation of lasers, especially in recent years, and their penetration into many fields, research has increased 
on their interaction with materials and objects, including tissues, which are highly complex and sensitive. 

Years ago, specifically in 1989, studies began examining the effects of monochromatic visible light on tissues and cells. 
It was observed that exposure to this monochromatic light enhances metabolic processes in cells depending on the 
wavelength and intensity of the monochromatic light [5]. These effects of lasers on cells have become evident in 
numerous other studies, which have demonstrated various cell responses to laser radiation, such as increased mast cell 
numbers and degranulation [6], and enhanced procollagen production in human dermal fibroblast cell cultures [7]. 

Many other studies have also examined the effect of parameters on tissues, such as the study on the speed of thermal 
ablation using lasers on chicken and pig tissues. However, the problem was the limited data used during the experiments 
[6]. 

The problem of limited data sets persisted in many other studies, where lasers of various power levels were used to 
evaluate burn depth in the tissues of several animals, such as cows and chickens. Although the study yielded significant 
results, the limited laboratory data used limited the possibility of replicating the experiment by other researchers [8]. 

Recent studies have also demonstrated the possibility of using artificial intelligence to distinguish tissue types using 
ultrasound waves. The study achieved good accuracy rates, but it also suffered from a limited data set, as the study did 
not provide a large, reliable database [9]. 

The AI revolution has produced numerous new laser datasets, and researchers have begun to create datasets that can 
be used in AI applications. One such dataset contains 2,000 laser images created using simulation systems [10]. 

These experiments and other studies that have used various techniques, such as optical tomography, sensitive infrared 
imaging, and tissue optical property estimation techniques, have primarily suffered from the lack of high-quality, open-
source datasets. This study attempts to address this by providing a high-quality dataset that has been tested using 
several classification models, as demonstrated by the results [4, 11-13]. 

3. Research Methodology 

This section presents the steps and methods used in this research, starting with the method of creating the dataset of 
both types, the ideal in the first case and the realistic in the second case, and the methods used to evaluate this model. 
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3.1. Dataset Creation 

The first step is to create a high-quality dataset for model selection. Therefore, two versions of the dataset were created: 
the first is a synthetic dataset, simulating ideal conditions, and the second is a realistic dataset, simulating realistic 
experimental conditions. This way, the models will be fully tested and compared under all conditions. 

The two datasets are generated using specialized mathematical functions for laser beam data generation. They contain 
the same parameters, such as wavelength and pulse duration. The difference between the two datasets is that the first 
is a synthetic dataset, simulating ideal conditions, while the second is a realistic dataset, with some noise and distortion 
added to it. 5% of the labels were inverted to simulate natural human error. After creating the two datasets, they are 
processed and split into equal training and test sets to ensure a balanced distribution of data during the evaluation 
process. Table 1 shows a sample of the data from the two datasets, the synthetic and realistic. 

Table 1 A sample of the data from the two datasets, the synthetic and realistic 

Dataset 
Type 

Wavelength 
(nm) 

Pulse 
Duration 
(ns) 

Energy 
Density 
(J/cm²) 

Absorption 
coefficient 
(cm⁻¹) 

Thermal 
Conductivity 
(W/(m·K)) 

Fluence 
(J/cm²/ns) 

Beam 
Profile 

Success 

synthetic 623.4 2.17 12.8 6.34 1.92 5.90 0.214 1 

Realistic 
615.7 
(±1.2%) 

2.31 
(±3.1%) 

13.1 
(±2.4%) 

6.28 
(±0.9%) 

1.85 (±1.8%) 5.67 0.221 1 

synthetic 892.1 0.87 8.4 8.15 3.67 9.66 0.108 0 

Realistic 
904.5 
(±1.5%) 

0.92 
(±5.7%) 

8.1 
(±3.6%) 

7.98 
(±1.3%) 

3.72 (±1.3%) 8.80 0.116 0 

3.2. Model Evaluation 

The next stage is testing the generated datasets using several new and traditional machine learning models. The first 
classifier is XGBoost, which uses a five-class crossover to ensure highly accurate feature selection and achieve the 
desired results. In parallel with XGBoost, LightGBM is used, which trains the model using the same data used with 
XGBoost. The two classifiers are then combined using a majority voting system to form a hybrid system that leverages 
the strengths of both classifiers. Deep neural network techniques are also used, as neural networks have a high capacity 
to handle numerical data, such as the one found in the dataset we created, and to select features with high accuracy. In 
addition to these techniques, traditional classifiers were used to provide high classifier diversity and to provide a solid 
baseline for comparison with existing research. Random forests, support vector machines, and logistic regression were 
used. Table 2 shows the parameters used for all classifiers. 

Table 2 Parameters used for all Classifiers  

Classifier  Parameter  Value 

XGBoost Learning Rate 0.01 to 0.3 

Max Depth 3 to 10 

Gamma 0.0 to 0.2 

Number of 
Estimators 

50 to 300 

Subsample 0.5 to 1.0 

Deep Neural 
Network 

Optimizer  Adam optimizer (learning rate = 0.005) 

Epochs  30 

Batch Size  32 

Neurons  256 neurons (initial dense layer), 128 (second dense layer), 64 and 32 
(Subsequent layers) 

Activation  ReLU activation 
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Regularization  L2 regularization (λ = 0.01) 

Dropout Layer Rate = 0.3 

LightGBM Number of 
Estimators 

300 

Learning Rate 0.05 

Max Depth 7 

Random State 42 

Random Forest Number of 
Estimators 

200 

Maximum depth 10 

Support Vector 
Machines 

Kernel  RBF 

Gamma  scale 

Logistic Regression Maximum Iteration 500 

After all classifiers have completed their work, the results are augmented by combining the unwound predictions with 
the original features for meta-learning to evaluate performance (via confusion matrices and F1-scores). This process 
helps select the best classifier by determining the best F1-score value. This model, fully illustrated in Figure 1, is 
expected to improve the classifier selection process and increase the accuracy of laser-tissue interactions. 

 
 

Figure 1 Proposed Model Diagram 
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4. Results and Discussion 

This chapter details the results in terms of the performance of selecting the most important features from a synthetic 
and realistic dataset, then applying the techniques to both datasets and analyzing the results. 

4.1. Synthetic and Realistic Datasets Features Importance 

Since the generated dataset contains many parameters, it is important to analyze these features before proceeding to 
the actual evaluation of the dataset or model. This analysis will reveal important observations and conclusions about 
the laser-tissue interaction process. It should be remembered that this study deals directly with real tissue, so feature 
analysis will contribute to greater accuracy when conducting experiments under realistic experimental conditions. 

Table 3 shows the standardized importance metrics. Thermal conductivity appears to be the most important feature in 
the SHAP-based analysis, with a standardized importance of 1 in both datasets. However, its importance in the XGBoost-
based analysis yields different results: ≈0.39 in the synthetic dataset and ≈0.71 in the realistic dataset. 

Table 3 Features Importance using XGBoost and SHAP 

Feature XGBoost - Synthetic SHAP - Synthetic XGBoost - Realistic SHAP - Realistic 

Thermal conductivity 0.388722 1.000000 0.705475 1.000000 

Pulse duration 0.301435 0.906396 0.596496    0.626760   

Absorption coefficient 0.316498 0.777739 0.603215    0.787267   

Energy density 0.436423 0.398320 0.361968    0.414773   

fluence 1.000000 0.261683 1.000000    0.645585 

wavelength 0.018235 0.024720 0.107013    0.104520   

Beam profile 0.019014 0.013957 0.144913    0.153100   

In the case of thermal conductivity, we can consider the utility of the feature measured by SHAP to be more significant, 
as thermal conductivity is a very important factor in the laser-tissue interaction process, as it can cause tissue damage 
if the threshold for reasonable thermal conductivity is exceeded. Other features, such as fluence, demonstrated 
significant importance in the segmentation decision process. Fluence showed a high standardized importance in the 
XGBoost-based analysis, reaching 1 for both datasets. However, its importance in the SHAP-based analysis showed a 
discrepancy, reaching ≈0.65 for the synthetic dataset and decreasing to ≈0.26 when noise was added to the realistic 
dataset. This relatively large difference in importance suggests that relying on thermal conductivity as the primary 
feature may be more effective. 

Pulse duration showed inconsistent results, with its importance decreasing in the SHAP-based analysis under realistic 
conditions, while its importance doubled in the XGBoost-based analysis under the same realistic conditions. This 
illustrates the difference between the usefulness of features in tree segmentation (used in XGBoost) and their actual 
predictive impact (used in SHAP). 

The absorption coefficient feature showed consistent results across both datasets, confirming its importance as an 
important feature that is not significantly affected by noise, like other features. 

The power density appears stable in the SHAP-based analysis but decreases significantly in the XGBoost-based analysis. 
Despite this discrepancy, it can be confirmed that power density is one of the most important features physically. 
However, this decrease may be due to its linear relationship with the results, which makes it less valuable for tree 
segmentation under noise. 

The fluence effect shows the greatest discrepancy in the results. Despite the good results in the XGBoost-based analysis, 
where the value reached 1 for both datasets, the importance in the SHAP-based analysis is significantly lower, reflecting 
an overreliance on geometric features in the tree models. 

Wavelength and beam profile appeared as the least important features among all features in both datasets, consistent 
with theoretical predictions for near-infrared laser systems. 
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4.2. Performance on the Synthetic Dataset 

All results were tested and performance evaluated on the synthetic dataset in the first case, where all techniques 
demonstrated excellent predictive results due to the quality of the data. Table 4 shows the results of all classifiers on 
the synthetic dataset. 

Table 4 Model Performance on the synthetic Dataset 

Model F1 Score 

XGBoost 0.9930 

Deep Neural Network 0.9803 

LightGBM 0.9923 

Random Forest 0.9854 

SVM 0.9898 

Logistic Regression 0.9526 

In general, the newer classifiers demonstrated higher and more consistent results, with the XGBoost model achieving 
the highest F1 score of 0.9930, slightly ahead of LightGBM, which achieved a similar F1 score of 0.9923. The deep neural 
network model also demonstrated excellent results, albeit slightly lower than previous techniques, achieving an F1 
score of 0.9803. 

Traditional classification techniques demonstrated impressive results, with Random Forest, SVM, and Logistic 
Regression achieving F1 scores of 0.9854, 0.9898, and 0.9526, respectively. Figure 2 shows the confusion matrix for 
each model. The matrices show high power for all classification models, with the majority of misclassifications being 
limited to the borderline cases, giving all models high reliability and accuracy. 

 

Figure 2 Confusion Matrices for the synthetic dataset models 

4.3. Performance on the Realistic Dataset 

The real test of the classifiers is with a realistic dataset, a dataset that mimics real-world data in terms of noise and 
interference. Table 5 shows the results of the classifiers on the realistic dataset. The classifiers performed well, although 
their results were slightly lower than those of the synthetic dataset, which is expected due to the addition of noise and 
interference. 
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Table 5 Model Performance on the Realistic Dataset 

Model F1 Score 

XGBoost 0.9371 

Deep Neural Network 0.9341 

LightGBM 0.9330 

Random Forest 0.9314 

SVM 0.9393 

Logistic Regression 0.9156 

In general, the newer classifiers demonstrated higher and more consistent results in average, with the XGBoost model 
achieving the second highest F1 score of 0.9371, slightly ahead of deep neural network, which achieved a similar F1 
score of 0.9341. The LightGBM model also demonstrated excellent results, albeit slightly lower than previous 
techniques, achieving an F1 score of 0. 9330. 

Traditional classification techniques demonstrated impressive results, with Random Forest, SVM (the higher result), 
and Logistic Regression achieving F1 scores of 0.9314, 0.9393, and 0.9156, respectively. 

Figure 2 shows the confusion matrix for each model. The matrices show high power for all classification models, with 
the majority of misclassifications being limited to the borderline cases, giving all models high reliability and accuracy. 

 

Figure 3 Confusion matrices for the realistic dataset models 

5. Conclusion 

The results demonstrated the high ability of the selected classification models to classify laser beams generated in new 
datasets and made them publicly available to researchers. This improved the laser-tissue interaction process and 
provided a highly accurate and safe alternative, especially since laser-tissue interaction is a sensitive process. 

This study presented two datasets: the first was a synthetic dataset representing ideal laser conditions, while the second 
was a realistic dataset, which simulated realistic laser conditions in terms of noise and interference. This provided a 
comprehensive analysis for combining design models in terms of handling both synthetic and realistic data. 
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Six models were used, ranging from modern classification models, XGBoost, LightGBM, and a deep neural network. 
Three traditional classification models were also used: Random Forest, SVM, and Logistic Regression. Modern 
techniques demonstrated significant superiority overall, with two of the top three models with both synthetic and 
realistic data being from modern classification models. The only classifier among traditional classification models that 
achieved comparable results to modern classification models was SVM, which was among the top three classification 
techniques with both datasets. 

This study provides two new datasets that can be directly used in many machine learning techniques that require high-
resolution datasets. Both datasets, and the results they demonstrated with the six models used, demonstrated high 
quality, providing promising avenues for future research and potential clinical applications that require direct laser-
tissue interaction.   
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