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Abstract

Artificial intelligence (AI) and machine learning (ML) have become critical components of modern cybersecurity
strategies, offering dynamic capabilities for detecting, analyzing, and mitigating cyber threats. This review synthesizes
existing literature to explore how Al and ML technologies are being applied in cyber threat detection, focusing on their
operational integration, effectiveness, and limitations. The study draws on 43 referenced sources, including peer-
reviewed journal articles, technical whitepapers, vendor documentation, and authoritative blogs, to provide a
comprehensive overview of the field. Findings highlight that Al enhances threat detection through real-time data
analysis, reduces false positives, and uses predictive modeling and adaptive learning. These technologies enable more
proactive and scalable defense mechanisms compared to traditional rule-based systems. However, challenges persist,
including the opacity of black-box models, vulnerability to adversarial attacks, data quality issues, and the lack of
standard evaluation frameworks. Regulatory concerns and the need for human oversight further complicate
widespread deployment. The review concludes that while Al significantly augments cyber defense capabilities, it is not
a standalone solution. For Al to be effectively and ethically integrated into cybersecurity, it must be transparent,
explainable, and aligned with organizational and regulatory goals. The study emphasizes the importance of explainable
Al robust datasets, and interdisciplinary collaboration in shaping the next generation of secure and trustworthy Al-
driven defense systems.

Keywords: Al; Machine Learning; Cybersecurity; Threat Detection; SIEM; SOAR; XDR; Anomaly Detection; Adversarial
Al

1. Introduction

The advent of artificial intelligence (AI) in cybersecurity is a decisive change when it comes to identifying, examining,
and protecting threats [1], [2]. Initially limited to basic rule-based enhancements in intrusion detection systems, Al
integration became more relevant in the middle of the 2010s when machine learning (ML) algorithms were applied to
intrusion detection to detect anomalies, classify malware, and analyze user behavior [3], [15]. This evolution accelerated
between 2017 and 2022 such that security-focused platforms have begun integrating Al-powered functionality into
SIEM (e.g., Splunk, IBM QRadar), SOAR (e.g., Cortex XSOAR), and more recently XDR systems which combine endpoint
and network telemetry to give a panoramic view of the threat [4], [5]. These platforms use Al in order to match the
events, find patterns in streams of massive amounts of data, and even allow automating the incident response [6]. The
technological growth has seen adoption in different areas of the industry though the effects are not even as better-
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established organizations enjoy sophisticated implementations. Simultaneously, a lot of small businesses experience
obstacles caused by finances, specialized knowledge, and their complexity in terms of integration [7]. However, Al
solutions have become even the focal point of contemporary cybersecurity today, capable of providing their scalable
approach to covering the diverse and changing threat environments [8].

Cybersecurity has increased significantly in its level of complexity over the last decade and the threats have not only
multiplied but also increased in nature [9]. Advanced persistent threats (APTs), APTs, zero-day exploits, fileless
malware, and multi-stage ransomware attacks now routinely bypass conventional perimeter defenses [10], [11].
Conventional rule-based and signature-driven intrusion detection systems (IDS) have trouble tracking these changing
methods of attack, and they tend to produce a high false-positive rate and miss new or obfuscated attacks [12]. Further,
the volume of log data created in endpoints, networks, and cloud environments has made manual processing of threats
too cumbersome [13]. This puts into perspective the intensity of finding smarter, more scalable and adaptive solutions,
to support or boost the existence of static security frameworks [14].

1.1. Problem Statement

Despite the growing integration of Al into modern cybersecurity systems, there are still major loopholes in terms of
performance, reliability, and transparency of these solutions. Although Al and machine learning have enabled an
increase in the speed and scalability of detection of known threats, limitations to these abilities exist and can be
attributed to imbalanced datasets, adversarial manipulation, and model interpretability, among other factors. Most Al-
based systems are black boxes, giving minimal transparency about how decisions are arrived at, which is a problem
because it is complicated in forensics analysis, compliance, and user assurance. Also, the use of Al may demand special
skills, as well as high computational power, making a particular application less possible in numerous organizations.
These loopholes demonstrate the issue that requires a critical evaluation of the existing artificial intelligence-based
methods, their weaknesses in their functioning, and the new dangers that lie in excessive faith in automated detect
systems.

1.2. Aim and Scope of the Review

The objective of this review is to evaluate how artificial intelligence has been applied to cyber threat detection,
particularly through platforms such as SIEM, SOAR, and XDR. It aims to:

Examine the types of Al and machine learning models used for threat detection

Analyze the strengths and limitations of these models in real-world scenarios

Compare leading Al-powered security tools and their practical integration

Identify ongoing technical, operational, and ethical challenges

Offer recommendations for improving the transparency, scalability, and effectiveness of Al-based cybersecurity
systems

2. Materials and Methods

2.1. Study Design

This paper adopts a structured narrative review methodology to evaluate the application of artificial intelligence (AI)
and machine learning (ML) in cyber threat detection. Unlike systematic reviews, which require meta-analytical
synthesis and strict protocol registration, a structured narrative review is appropriate for emerging and
multidisciplinary fields such as Al in cybersecurity, where heterogeneity in study designs, technologies, and evaluation
metrics limits quantitative aggregation. The study design follows a transparent and replicable protocol, emphasizing
thematic categorization, tool-based comparisons, and critical analysis of trends.

2.2. Data Sources and Search Strategy

Literature was retrieved from a combination of academic databases and authoritative industry sources to ensure a
comprehensive review of both theoretical advances and real-world applications. The primary academic databases
consulted included IEEE Xplore, ACM Digital Library, Elsevier ScienceDirect, SpringerLink, and Wiley Online Library. In
addition, technical whitepapers, vendor documentation, and threat intelligence reports were sourced from major
cybersecurity firms such as IBM, Palo Alto Networks, Microsoft, and CrowdStrike, capturing tool-specific developments
and applied insights.
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A structured search strategy was employed using Boolean combinations of keywords related to Al and cybersecurity.
Search terms included: “artificial intelligence” or “Al” combined with “cybersecurity” or “threat detection”; “machine
learning” or “deep learning” combined with terms such as “intrusion detection system,” “SIEM,” “SOAR,” or “XDR”;
“anomaly detection” in conjunction with “cyber defense” or “incident response”; and finally, “adversarial AI” or
“explainable AI” with “network security.” These queries were designed to capture literature at the intersection of Al

technologies and cyber defense mechanisms.

Searches were limited to the period from January 2017 to July 2025 to focus on the most recent and relevant
developments. Only English-language publications were considered to ensure consistency in evaluation and
interpretation across all sources.

2.3. Inclusion and Exclusion Criteria

Sources were selected based on their direct relevance to the application of Al and machine learning in cyber threat
detection. Eligible studies included those that examined deployed tools, real-world system architectures, or
documented case studies. Priority was given to literature that offered performance analysis of Al models, discussed
practical benefits and limitations, or referenced widely adopted industry frameworks such as MITRE ATT&CK or NIST
SP 800-53. Only sources that were peer-reviewed or published by technically credible vendors were included to ensure
academic and practical reliability.

Studies were excluded if they focused exclusively on theoretical aspects of Al without linking to cybersecurity
applications, lacked methodological transparency, or were classified as duplicates, opinion pieces, or editorial
commentaries. Publications that did not address detection or defense-related use cases were also excluded from the
final synthesis.

2.4. Screening and Data Extraction

An initial pool of 96 records was identified through structured searches across academic databases and industry
sources. After removing duplicates and screening titles and abstracts for relevance, 66 records remained. Full texts of
34 of these were assessed based on inclusion and exclusion criteria. In addition, 9 more sources were included through
manual reference checks, expert recommendations, and grey literature tracking, bringing the total to 43 sources for the
final qualitative synthesis. These comprised 25 peer-reviewed journal articles, 2 peer-reviewed conference papers, 7
industry whitepapers and technical documentation, 7 authoritative blog posts and vendor-authored web articles, and 2
documents reflecting government or standards-related cybersecurity frameworks. The entire screening and inclusion
workflow is summarized in Figure 1, a PRISMA-style flow diagram adapted for this narrative review.

Data were manually extracted using a standardized form capturing AI/ML model type (e.g., supervised, unsupervised,
deep learning), application domain (e.g., SIEM, SOAR, anomaly detection), key metrics (e.g.,, mean time to detect, false
positive rate), integration notes, and reported advantages or challenges. Thematic categorization was applied to support
structured comparison across tools and approaches.
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PRISMA Flow Diagram: Al in Cybersecurity Literature Review
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Figure 1 PRISMA flow diagram illustrating the literature screening and selection process for this structured narrative
review on Al in cybersecurity [44]
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3. Discussion

3.1. Al Models Used in Threat Detection

Artificial intelligence (AI) and machine learning (ML) have transformed the field of cyber threat detection by enabling
systems to identify malicious behaviors, adapt to evolving threats, and operate at scale [2], [8]. These capabilities are
driven by a range of algorithmic models that can be broadly categorized into supervised, unsupervised, and
reinforcement learning approaches [16]. A comparative summary of these Al models, their cybersecurity use cases, and
associated trade-offs is presented in Table 1

Supervised learning models are trained on labeled datasets that distinguish between benign and malicious activities.
Common algorithms include support vector machines (SVMs), decision trees, and random forests, which are frequently
applied in malware classification, spam filtering, and phishing detection [18]. For example, Fatima et al. showed that the
optimized ensemble and linear classifiers like SGD, Extra Trees, Random Forest, and MLP had very high accuracy and
F1-scores when used on spam email detection on three benchmarked datasets [17]. These models do very well in
situations where the threat is known but may perform poorly when a new or obfuscated attack is detected because of
the situations where models rely on historical data [18].

In contrast, unsupervised learning algorithms do not require labeled information and are particularly effective in
identifying anomalies or deviations from expected behavior that may signal emerging or novel threats [19]. Common
techniques used for detecting lateral movements, insider threats, and zero-day attacks include clustering algorithms
such as K-means and DBSCAN, as well as autoencoders [1], [20]. Although these models offer greater flexibility, they
often suffer from high false positive rates when not properly calibrated [21]. The distinct workflows of supervised and
unsupervised learning models for cybersecurity threat detection are illustrated in Figure 2, highlighting differences in
data requirements, processing stages, and detection outputs. The figure offers valuable insight into their respective
implementation logic and operational distinctions [45]
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Figure 2 Comparison of supervised and unsupervised learning pipelines for cybersecurity threat detection [45]. (A)
Supervised models rely on labeled historical data and involve model training, validation, and testing to classify inputs
as attacks or normal. (B) Unsupervised models operate on unlabeled data, identifying patterns or anomalies through
interpretation without prior labeling. Both approaches include optimization processes and yield detection results for

threat identification
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Deep learning techniques, particularly convolutional neural networks (CNNs) and recurrent neural networks (RNNs),
have been adopted for both supervised and unsupervised tasks due to their ability to learn complex patterns in high-
dimensional data [22]. Recent studies have also explored graph neural networks (GNNs) for modeling relational data in
network topologies and transformer-based architectures for log analysis and sequential prediction [23], [24].

Reinforcement learning (RL) is an emerging paradigm that allows detection systems to learn optimal responses to
threats through interaction with the environment [25]. While RL has shown promise in dynamic defense scenarios such
as honeypot adaptation and deception-based strategies, its application remains limited due to challenges in
environment modeling, reward specification, and computational cost [26].

A critical distinction in Al-powered detection lies between anomaly-based and signature-based models. The former
identifies deviations from normal patterns, enabling the discovery of novel threats but often at the expense of increased
false positives [28]. The latter, though effective in recognizing known threats, fails to generalize across emerging attack
vectors [1]. Contemporary detection frameworks increasingly adopt hybrid models that combine the strengths of both
approaches to enhance detection precision and reduce alert fatigue [29].

As shown in Figure 3, the majority of AI/ML applications in cybersecurity are concentrated in intrusion detection and
threat intelligence, each accounting for 25% of documented use cases [1]. This distribution reflects the prioritization of
real-time attack detection and contextual analysis in modern security strategies. Notable real-world deployments
include IBM Watson for Cybersecurity, which leverages natural language processing to correlate threat data [30], and
Darktrace’s Enterprise Inmune System, which uses unsupervised learning to detect behavioral anomalies in corporate
networks [31].

These examples underscore the diversity of Al models currently used in threat detection and highlight ongoing trade-
offs between accuracy, interpretability, and adaptability in dynamic threat landscapes.

Table 1 Comparison of Al Models and Their Applications in Cybersecurity Threat

Al Model Type | Key Algorithms Primary Strengths Limitations
Applications
Supervised SVM, Decision | Malware High accuracy on | Requires large labeled
Learning Trees, Random | classification, known threats; fast | datasets; poor at novel
Forest, MLP spam/phishing classification attack detection
detection
Unsupervised K-Means, DBSCAN, | Anomaly detection, | Can detect unknown | High false positives;
Learning Autoencoders insider threats, and | threats; no need for | requires tuning of
zero-day attacks labeled data anomaly thresholds
Deep Learning CNN, RNN, GNN, | Log analysis, | Learns complex | Computationally
Transformer behavioral modeling, | patterns; adaptable to | intensive; lacks
Models image-based IDS high-dimensional data | interpretability ("black
box")
Reinforcement Q-learning, DQN, | Dynamic defense, | Learns optimal | Sparse real-world
Learning Policy Gradient | deception  systems, | responses; suitable for | deployment; reward
Methods and honeypot control | adaptive defense | modeling is complex
scenarios
Hybrid Models | Combined Behavioral analysis, | Improved Integration complexity
supervised + | threat correlation, | generalization; requires constant re-
unsupervised or DL | alert tuning balances precision and | training
models recall

Note: Adapted from sources including [1], [17]-[18], [20]-[26], [29].
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Al/ML Applications in Cybersecurity - Key Areas of Focus

Automated Response

Threat Intelligence

Intrusion Detection

Behavioral Analysis

Malware Classification

Figure 3 Key functional areas of AI/ML application in cybersecurity[1]. Intrusion detection and threat intelligence
represent the largest focus areas (25% each), followed by malware classification (20%), behavioral analysis (15%),
and automated response (15%)

3.2. Integrated Security Platforms

The integration of artificial intelligence into cybersecurity operations has extended beyond standalone detection
models to comprehensive platforms that unify data collection, analysis, and automated response. Some of the latter
include Security Information and Event Management (SIEM), Security Orchestration, Automation, and Response
(SOAR), and Extended Detection and Response (XDR) systems, which are becoming the central architectural
frameworks by which Al-guided threat detection and incident management is being actualized [32].

SIEM platforms, such as Splunk Enterprise Security and IBM QRadar act as a centralized location where logging data
can be ingested, aggregated and correlated, all among various sources, including firewalls, intrusion detection systems,
endpoint agents and cloud workloads [33]. Historically rule-driven, new SIEMs integrate machine learning and
behavioral analytics to detect the odd exceptions, raise red flags’ suspicious mode and rank alerts according to
contextual risk score. For example, the Adaptive Response Framework by Splunk uses Al to streamline the process of
enriching the threats, as well as auto-initiating dynamic response actions among the integrated tools. These
improvements suppress analyst fatigue and false alarms and allow the detection of the stealthy multi-stage attacks that
would increasingly elude fixed correlation rules.

SOAR platforms including Cortex XSOAR by Palo Alto Networks and Microsoft Sentinel are aimed at automating and
orchestrating the incident response processes in a heterogeneous security setting [34]. Al plays a crucial role by
enabling context-aware playbook selection, intelligent alert prioritization, and adaptive remediation strategies. For
example, Cortex XSOAR includes supervised learning model integration to correlate the alerts with the previous case
data, and Microsoft Sentinel employs natural language processing (NLP) to break down threat intelligence feeds and
prescribe the necessary actions. This automation helps not only promote faster response times and consistency in
incident processing procedure but can also help minimize human error and relieve the pressure on manual input of
analysts.

Extended Detection and Response (XDR) solutions that are the next evolution in detection and response platforms and
will enable the elimination of the operational silos between endpoint, network, cloud and identity telemetry that have
traditionally existed. XDR platforms provide a more contextual and correlated threat detection capability by joining
visibility across these areas and subjecting high-volume security information to Al-driven analytics in an effort to
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normalize it and contextualize and interpret boxes of data beyond the capacity of security teams in real-time. Premier
vendors, including CrowdStrike Falcon XDR, Palo Alto Networks Cortex XDR and Trend Micro Vision One, use tricks like
escort learning, behavior analytics and automation correlation engines to follow advanced attack chains that can slip
detection in silos [35]. Such convergence minimizes alert and investigation cycle times collaborative proactive
containment of advanced persistent threats (APTs) and lateral movement along the hybrid environment.

The integration of modern security platforms to external threat intelligence frameworks and APIs, including MITRE
ATT&CK, STIX/TAXII, as well as commercial threat feeds, is one of the major strengths of such platforms. Al models are
employed to continuously ingest, analyze, and learn from these external sources, enabling dynamic updates to risk
scoring algorithms, alert enrichment, and adaptive tuning of detection thresholds. This continuous learning pipeline
allows platforms to shift from static, signature-based defense models toward proactive, intelligence-driven threat
detection. As threat landscapes evolve rapidly, such integrations ensure that detection systems remain current, context-
aware, and resilient against both known and emerging attack techniques [36] and are supported by comprehensive
cross-telemetry correlation engines typical of XDR solutions [5]

Overall, the synergy between Al techniques and integrated security platforms has fundamentally reshaped modern
cyber defense strategies. These systems now operate not merely as repositories of security telemetry, but as intelligent
orchestration engines capable of autonomous decision-making, context-aware alerting, and rapid incident remediation.
However, to fully realize their potential, successful deployment demands rigorous calibration, robust data governance,
and seamless interoperability across heterogeneous environments.

Table 2 Comparison of SIEM, SOAR, and XDR Platforms in Al-Powered Cyber Defense

Platform Primary Al Integration Strengths Limitations Examples
Function
SIEM  (Security | Centralized log | Machine learning | Broad visibility | High setup cost; | Splunk
Information and | aggregation, for anomaly | across noisy  alerts; | Enterprise
Event event detection, infrastructure; static rules | Security, [BM
Management) correlation, and | adaptive supports require QRadar
alerting correlation rules, | compliance  and | frequent tuning
threat scoring forensic analysis
SOAR (Security | Automated Context-aware Speeds up | Requires high- | Cortex XSOAR,
Orchestration, incident playbooks, NLP | response time; | quality Microsoft
Automation, and | response and | for threat intel | standardizes integrations Sentinel
Response) workflow parsing, remediation; and rule
orchestration supervised reduces  analyst | engineering
models for alert | workload
triage
XDR (Extended | Unified detection | Ensemble Full-stack Still  evolving; | CrowdStrike
Detection and | across endpoint, | learning, visibility; reduced | vendor lock-in; | Falcon XDR,
Response) network, cloud, | behavioral alert fatigue; better | integration Cortex XDR,
and identity | analytics, and | detection of APTs | complexity Trend  Micro
layers real-time signal Vision One
correlation

Note: Table compiled by the author using information from [5], [32]-[36].
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Figure 4 Integration of SIEM, SOAR, and EDR components in a unified cybersecurity architecture [32]. Logs from
endpoint detection and response (EDR) tools are centralized through the SIEM system, which feeds into SOAR for
automated incident response

3.3. Advantages of Al in Cyber Defense

With the use of artificial intelligence (Al) in cybersecurity activities, the possibilities of improving the identification,
prioritization, and mitigation of threats is very promising. Al enhances both the speed and accuracy of cyber defense
systems in several different ways by supplementing the effectiveness of more conventional detection mechanisms with
learning-based systems and contextual scrutiny.

The potential of Al in terms of the actual-time analysis of huge amounts of log information that are created in endpoints,
servers, cloud-based systems, and network gadgets, is one of the most critical advantages of Al. This is in contrast to
rule-based systems, which may be based on known threat signatures and thus unable to identify anomalies or possible
breaches with a minimal delay, since the Al models, especially when driven by streaming analytics and pattern
recognition, can process the data generated by the events dynamically [37]. This is particularly useful to contemporary
organizations that face a multi-vectoring attack and time oriented exploits.

Another significant advantage is the lessened number of false positives, which is one of the difficulties of standard
intrusion detection systems. By training on the typical behavior of their users, applications and systems, Al-based
platforms can stop malicious deviations by using the baseline behavior as a filter. The effectiveness of such a behavior-
based method is that it drastically reduces the number of irrelevant alerts that the security analysts are shown which
enhances operational capabilities and allows them to triage incidents much faster [8].

Al also enables the use of predictive analytics, allowing cybersecurity systems to proactively identify potential threats,
and intervene against it before it happens. With the help of correlation between past threat patterns and the present
level of activity in the system, predictive models are further able to point to indications of compromise (IoCs) as well as
suspicious behavioural chains, even when no full attack signature is available. Such a proactive approach contributes to
early containment and hinders the increase of damage [38].

In addition, Al has the potential to be adaptively learned entailing that its systems constantly improve with respect to
new and unfolding patterns of threat. With attackers changing tactics in order to avoid detection, Al algorithms have
the ability to retrain on newly updated datasets or integrate new threat intelligence providing them an opportunity to
optimize their detection logic. Such flexibility minimizes the chances of model obsolescence and improves ability to
withstand dynamism [37].

The advantages are also supported by the performance indicators that compare the Al-based detection system with the
classical approaches to cybersecurity. In terms of the operational metrics, as illustrated in Figure 5, Al-based strategies
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show significant results in terms of major improvement. As an example, Al models have enhanced acceleration of real-
time analysis to 92% up by 45%, and the number of false positives was reduced by 85%, as compared to 25 percent.
There was an increase in the accuracy of detection of threats by 26 percent to 94 percent as predictive capability and
adaptive learning efficiency increased to 78 percent and 89 percent respectively. The response to incidents also greatly
increased-it increased to 88 percent as compared to 40 percent. These metrics support the concept of Al being a
potentially powerful tool in advancing threat detection as well as making the least amount of work by the security
analysts thus allowing it to take appropriate steps to mitigate the breach in time, hence the strategic value it may have
in the contemporary cyber-security environment.

Performance Improvement Metrics from Al-Powered Detection
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Figure 5 Performance improvement metrics from Al-powered detection systems compared to traditional methods.
Al-driven approaches show strong gains in real-time speed of analysis, false positives, accuracy of detection of threats,
predictive performance, and adaptive learning and response

3.4. Limitations and Ongoing Challenges

While artificial intelligence (AI) has proven to have significant potential in terms of improving cyber defense, there are
still a number of limitations that remain in the way of its full-scale implementation and improving its effectiveness.
These issues exist both in technical, organizational, and regulatory spheres, and display important gaps that are to be
closed to achieve secure, scalable, and ethically aligned Al usage. The main strengths and weaknesses of Al in the field
of cyber defense regarding such areas as detection, adaptation, and governance are provided in Table 3 below.

One of the most time-sensitive issues of Al-based cybersecurity is the data imbalance and scarcity of labeling, mostly in
supervised learning environments. Security data are usually biased probably because the number of malicious events
is surpassing the quantity of benign events and gives the model a low probability of generalizing well to unseen or
infrequent classes of attack patterns [39]. In addition, the process of labeling cybersecurity data, particularly for more
complex behavior such as lateral movement or polymorphic malware requires expert knowledge and a lot of time to
label which can cause delays and inconsistencies when training a model.

The fact that Al models are prone to adversarial attacks and inputs purposefully altered to avoid being detected or used
to trick classification is another major issue. In cyber security scenarios, the attacker may generate minor aberrations
in the characteristics of the traffic or in the structure of the payload, which evades the defenses without affecting the
malicious purpose. In particular, recent studies have shown how adversarial inputs may be used to attack [oT-enabled
systems identifying weaknesses even in time-series models that might be used for predictive maintenance applications
[40]. The presence of these risks establishes the importance of strong adversarial defense mechanisms to Al-powered
cyberspace.
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Lack of transparency, with most Al models being represented as an opaque or black box, especially within deep learning
models, is a significant drawback to their actual use in security challenged settings. The security analysts also face an
issue in validating decision-making logic, such as the decision to flag an alert or the decision to miss that alert, as well
as incident response and reporting regulatory compliance. Even though explainable Al (XAI) methods such as SHAP and
LIME are being used more frequently, they tend to be local in nature and their analysis is conducted using anecdotal
rather than precise measures. This has cast doubt on their reliability and usefulness in operational settings, including
cybersecurity [41].

Other than the technical limitations, organizational constraints also present a barrier. The major expense when
implementing Al in cybersecurity is the cost of infrastructure, the cost of software, and experts who are skilled in the
field. Most organizations do not have the internal knowledge to work on the development, fine tuning, and in-life
management of any Al-based solutions and it creates a talent shortage, further restricting adoption. Also, it can be
cumbersome and resource-demanding to integrate Al into the old systems and workflow, particularly where there is no
interoperability standard [42].

Finally, regulatory, legal, and ethical issues also persist. Al as a tool to observe network traffic and user activities attracts
the risks of violating data privacy and harboring prejudices or not adhering to regulatory frameworks like GDPR, HIPAA,
or NIST guidelines. Increasingly, there is a question of whether algorithms should be accountable when Al systems make
decisions that affect the security posture of an organization or privacy rights of an individual. The use of Al in cyber
defense is bound to introduce new risks despite reducing pre-existing risk levels unless there are policy guidelines and
governance structures to manage all interactions between Al and the cyber defense apparatus [43].

Ultimately, while Al significantly augments cyber defense capabilities, its implementation should be done with caution,
ensuring that models are transparent, transparent, robust and in line with general operation and regulatory bodies.

Table 3 Summary of Key Advantages and Limitations of Al in Cyber Defense

Category Advantages Limitations/Challenges

Detection Real-time analysis of large-scale log and | Imbalanced datasets and rare attack labels hinder

Efficiency telemetry data [36] generalization [40]

Accuracy Reduced false positives through | Adversarial inputs can fool Al models [41]
behavioral baselining [37]

Proactivity Predictive analytics enable preemptive | Black-box models reduce transparency and
threat identification [38] interpretability [42]

Adaptability Continuous learning from new threat | Model drift and retraining requirements create
data [39] maintenance overhead

Operational Scalable response automation via | High implementation costs and skill gaps [43]

Value SOAR/XDR platforms [32-34]

Governance and | Enhanced compliance through policy- | Privacy, regulatory, and accountability issues under

Ethics aware Al agents (emerging) GDPR, NIST, HIPAA, etc. [44]

4., Conclusion

This review examined the evolving role of artificial intelligence (Al) in modern cyber defense, with a particular focus on
its applications across detection, prediction, response automation, and threat mitigation. The integration of Al
technologies, ranging from supervised learning and unsupervised clustering to deep neural networks and
reinforcement learning, has significantly enhanced cybersecurity operations' speed, scale, and precision. By leveraging
large-scale threat intelligence, behavioral baselines, and contextual inference, Al systems are increasingly capable of
detecting both known and unknown attacks with reduced false positives and greater operational efficiency.

However, it is necessary to note that Al is not a silver bullet. It is highly effective in the use of data-driven detection of

anomalies and triage automation, but more so if good data, variable modeling, and overseeing structures are utilized.
Trusting the Al models blindly (black-box Al models) can create potential bugs especially when manipulating the
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opacity of the system or adding adversarial inputs are used maliciously. Therefore, it is important to establish a
sustainable balance between intelligent automation and human-led governance.

Moreover, the broad use of Al in the domain of cybersecurity requires scalable, explainable, and ethically safe
deployments. Explanable AI (XAI) is especially important to generate trust of analysts, satisfy the regulatory
requirements, and make informed decisions in critical incidents. To counterbalance the increasingly sophisticated
nature of cyber threats, the interpretability, generalizability and security of Al models should be made the primary focus
of future research and development in order to secure sustainable and reliable cyber defense systems.

Recommendations

To ensure the responsible and effective use of Al in cybersecurity, future work must aim at developing explainable Al
(XAI) to promote more transparency and confidence in responding to the automation decision. Benchmarking datasets
with standardized and realistic diversity of attacks are also required to introduce and enhance intrusion detection
systems based on Al Also, interdisciplinary cooperation between Al-developing, security, and policymaking is essential
to ensure the adjustments of technological advancement to the ethical norm and control. The ability to withstand
manipulations and drift in Al models by investing in secure Al architecture will further strengthen defense capabilities
against adversarial manipulation and model drift.
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