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Abstract

Accurate calibration of traffic simulation models is essential for replicating observed traffic conditions, and subsequent
optimization of decision-making processes and targeted investments in transportation infrastructure. This study
applies a genetic algorithm (GA) to optimize key parameters of the car-following model for a basic freeway segment in
California, aiming to minimize the error between simulated and observed traffic data. Outputs generated during GA
iterations were analyzed using paired T-tests and Wilcoxon signed-rank tests to compare simulated speed and flow
against ground truth data. Accuracy for each sample was matched to its corresponding P-value, revealing a clear trend:
when accuracy levels exceeded 80%, P-values for both speed and flow consistently rose above 0.05. This indicates that
the simulated outputs became statistically indistinguishable from the observed field data after 80% accuracy. These
findings demonstrate that combining statistical significance with accuracy metrics can effectively guide calibration
processes and establish thresholds for acceptable simulation accuracy, contributing to a robust framework for traffic
simulation studies.

Keywords: Civil engineering; Highway engineering; Traffic simulation; Traffic flow modeling; Genetic algorithm
optimization; Transportation infrastructure planning

1. Introduction

Traffic simulation has become a cost-effective and indispensable tool for transportation planning, aiding engineers and
planners in designing and managing efficient road systems [1, 2]. By modeling various scenarios, simulation provides
insights into potential traffic conditions, operational performance, and safety outcomes, ultimately informing critical
decisions for infrastructure investment and policy-making [3, 4]. However, the accuracy of these simulations in
reflecting real-world conditions is paramount. A poorly calibrated model risks either underestimating or overestimating
traffic performance/behavior, leading to unreliable future predictions and suboptimal outcomes for simulation-based
studies.

Accurate replication of real-world traffic behavior is particularly crucial in unique or complex scenarios, where reliable
predictions can have significant implications. For instance, simulations may be employed to study traffic behavior under
extreme weather conditions, evaluate the relative benefits of innovative road designs, or analyze the impact of emerging
technologies such as connected and autonomous vehicles (CAVs) [5] on prevailing traffic conditions. Each of these cases
demands a model that aligns closely with real-world data to ensure valid and actionable results.

Over the years, researchers have developed a variety of techniques to calibrate simulation models and adjust driving
behavior parameters. Most calibration efforts have relied on metaheuristic optimization algorithms such as genetic
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algorithms, particle swarm optimization, and simulated annealing [6, 7], which systematically minimize the differences
between simulated and observed traffic conditions. These methods automate the calibration process, achieving high
accuracy and efficiency. On the other hand, some researchers have taken a more manual approach, employing grid
search methods to iteratively test and adjust parameters [8, 9]. While these approaches have advanced the field of traffic
simulation calibration, their focus has been primarily on minimizing errors, without defining an acceptable threshold
for accuracy in simulation studies.

Despite these advancements, no study has yet established a standard for what constitutes an acceptable level of
accuracy in traffic simulation. This knowledge gap has significant implications, as simulations often serve as the
foundation for policy decisions and infrastructure investments. Without a clear standard, there is a risk of over-reliance
on models that may not meet the rigor required for reliable predictions. To address this gap, this study investigates the
use of both parametric and non-parametric statistical methods to evaluate calibration accuracy. A basic freeway
segment in California is used as a case study, providing a controlled environment for testing and analysis.

This paper makes a novel contribution by not only applying metaheuristic optimization methods for calibration but also
analyzing the statistical significance of accuracy levels achieved. By matching accuracy metrics with statistical
significance, this study establishes a framework for determining acceptable thresholds for simulation accuracy. These
findings aim to contribute to the standardization of accuracy metrics in traffic simulation, ensuring that future models
achieve the reliability necessary for critical transportation planning decisions.

2. Methods

2.1. Study Area

The study area is a segment of Interstate I-80, located in Los Angeles, California, within Yolo County, as illustrated in
Figure 1. This section of the freeway is a four-lane basic segment with a total length of 5,280 feet. The study focused on
the evening peak period, specifically from 4:00 PM to 5:00 PM on August 21, 2018. Field traffic data, including flow and
speed, were collected and aggregated into 5-minute intervals.
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Figure 1 [-80 Freeway Segment in Yolo County (Google Earth)

Table 1 summarizes the traffic flow observed in each lane during these intervals. The table also presents the total traffic
flow across all four lanes and the average traffic speed for the segment.
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Table 1 Collected Traffic from Sensors.

Time Speed (mph) Flow (Veh/ 5 Minutes)

Lane 1 Lane 2 Lane 3 Speed Lanel | Lane?2 | Lane 3 | Flow
4:05PM | 58.30 56.30 55.60 56.90 172 150 112 434
4:10 PM | 57.70 57.70 54.00 56.80 161 160 107 428
4:15PM | 57.50 58.90 53.00 56.80 172 159 119 450
4:20 PM | 58.10 58.20 58.70 58.30 171 154 122 447
4:25PM | 56.70 58.30 54.20 56.60 168 138 108 414
4:30 PM | 41.00 43.60 43.90 42.80 139 134 128 401
4:35PM | 46.20 46.70 46.00 46.30 160 148 127 435
4:40 PM | 53.10 54.30 54.50 53.90 159 145 116 420
4:45PM | 55.70 56.30 56.60 56.20 182 164 130 476
4:50 PM | 54.90 57.40 56.80 56.30 167 160 131 458
4:55PM | 36.30 44.40 44.00 41.70 117 132 122 371
5:00 PM | 33.30 38.70 37.40 36.40 136 131 126 393

2.2. Car Following Model

The Wiedemann 99 (W99) model is a psycho-physical car-following model develop in 1999, derived from the original
Wiedemann model proposed in 1974 (W74) [10]. It consists of 10 parameters (CCO, CC1, .., CC9), which can be
calibrated (or adjusted) to represent driving behaviors of human driven vehicles (HDVs) on freeways. Among these,
CCO, CC8, and CC9 are particularly crucial in determining the model's performance. The equation governing the model
is given by:

€C8-CC9

v, (t + At) = min {vn(t) + 3.6 X (CC8 0 X vn(t)) At; ug, 3.6 X

(1)

sn(t)_CCO_LTL—l . }
e T

Where v, (t + At) represents the speed of the subject vehicle after At seconds relative to time step t, Sy, ) is the distance
between the subject and leading vehicle; L,,_; denotes the length of the leading vehicle; and uy is the free-flow speed.
The explanations for 10 parameters are described in Table 2.

Table 2 Traffic Parameters

W99

Parameters | Interpretation Default
cco Average standstill distance (m) 1.4
CC1 Headway (s) 1.2
Ccc2 Longitudinal oscillation (m) 8
CC3 Start of deceleration process (s) -12
CC4 Minimal closing Av (m/s) -1.5
CC5 Minimal opening Av (m/s) 2.1
CCé Speed dependency of oscillation (10-4rad/s) | 6
cc7 Oscillation acceleration - m/s? 0.25
Ccc8 Acceleration rate when starting (m/s?) 2
cco Acceleration behavior at 80 km/h (m/s?) 1.5
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2.3. Calibration

A genetic algorithm (GA) is used to enhance the calibration of a microscopic traffic simulation model (the W99 car
following model) by approaching near-global optimal solutions [11, 12]. The GA simulates biological evolution through
selection, crossover, and mutation mechanisms. Initially, the algorithm begins with a randomly generated population of
solutions, and in each iteration, higher-quality solutions have a greater chance of being selected for reproduction,
producing new populations through crossover and mutation. This study employs two different GA configurations: the
first uses a population size of 20, with a 20% mutation probability over 20 generations, while the second uses a
population size of 30, with a 30% mutation probability over 30 generations. The objective is to assess individual GA
members to obtain a sufficient sample size for generalization in the study.

The calibration process is executed in Python, where binary chromosomes are randomly generated to represent feasible
solutions. These chromosomes are then decoded into model parameters, which are fed into the SUMO simulation
software. The objective function is evaluated by comparing the simulated traffic flow and speed data with observed real-
world values. The calibration continues until the maximum number of generations is reached or a predefined stopping
condition is satisfied. This process is depicted in Figure 2 as adopted from. In this regard, the optimization framework
is formulated as follows:

Imihalization
Generate a random set of parameters
Set gencration

"~ Run VISSIM p——————————
Observed data —l-l Calculate the objective fanction value
Selection

Crossover

Muiation

" Generation=Max YES - -
. i —b| Cieneration ++
Gren — !

MO

Update the best solustion

Figure 2 GA Calibration process
f(Vobs Vsim)
Subject to the constraints:
Ly <xi<Suy,i=1.n,

Where x;= the model parameters to be calibrated, f (obj)= objective function, V°?%, V™= observed and simulated value
of model parameters, [, u, = the respective lower and upper bounds of model parameter, n = number of variables. The
objective function uses the Mean Absolute Normalized Error (MANE), which is provided by the following equation. The
calibration using the flow and speed data as performance measures is formulated as follows:

1 ]
- i=1 et
N dobs,i Vobs,i

Min MANE(q, 17) — ZN """ (|qabs,i_qsim,i| + |Vobs,i_Vsim,i|) ........ (2)

Where q,ps i) Gsim; = Observed and simulated traffic volume for a given time period i, v,ps;, Vsim,; = Observed and
simulated traffic speed for a given time period i, N = total number of observations.
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2.4. Statistical Testing

During the calibration process, each candidate solution produced by the GA iterations was evaluated for statistical
significance using both parametric and non-parametric methods to compare the simulated and observed traffic data.
The two tests employed are described below:

2.4.1. The Paired T-test

The paired T-test is a parametric test used to compare the means of two related groups [13, 14], in this case, the
simulated traffic data and the observed traffic data. This test evaluates whether there is a statistically significant
difference between the two sets of data [15,16]. It assumes that the differences between the paired values are normally
distributed. The null hypothesis for this test is that there is no significant difference between the simulated and observed
traffic flow and speed data, and a p-value less than 0.05 indicates a significant difference.

2.4.2. The Wilcoxon Signed-Rank Test

The Wilcoxon signed-rank test, a non-parametric test, is used when the assumption of normality is not met and the data
are paired [17, 18, 19]. This test compares the distributions of two related samples (simulated and observed data),
ranking the absolute differences between the pairs and then testing whether the ranks of these differences significantly
deviate from zero. It does not require the data to follow a normal distribution, making it suitable for cases where the
data may be skewed or contain outliers. A p-value less than 0.05 indicates that the difference between the simulated
and observed data is statistically significant.

Both tests were utilized to assess the robustness and accuracy of the traffic simulation model in replicating real-world
conditions. The paired T-test provides a direct comparison of means, while the Wilcoxon signed-rank test offers a more
flexible approach when the data distribution does not meet parametric assumptions.

3. Results

3.1. Calibration Results

As previously discussed, this study involved two distinct calibrations to analyze the impact of different parameter
configurations on model performance. The first scenario employed a population size of 20, a mutation rate of 20%, and
20 generations, while the second scenario used a population size of 30, a mutation rate of 30%, and 30 generations.
Together, these two scenarios produced a total of 1,300 samples (400 from the first configuration and 900 from the
second). The primary aim of these analyses was to generate a sufficiently large sample size to ensure that the findings
are robust and generalizable.

Table 3 Calibration Results

W99 Parameters

Parameters | Interpretation Default Calibration 1 | Calibration 2
CCo Average standstill distance (m) 1.40 0.50 1.54
Ccc1 Headway (s) 1.20 1.18 1.03
cc2 Longitudinal oscillation (m) 8.00 7.14 8.93
Ccc3 Start of deceleration process (s) -12.00 10.72 12.60
Ccc4 Minimal closing Av (m/s) -1.50 -0.23 -0.35
CC5 Minimal opening Av (m/s) 2.10 0.25 0.44
cce Speed dependency of oscillation (10-4rad/s) | 6.00 5.06 5.69
cc7 Oscillation acceleration - m/s? 0.25 0.21 0.31
Ccc8 Acceleration rate when starting (m/s2) 2.00 2.30 2.69
CCo Acceleration behavior at 80 km/h (m/s2) 1.50 2.98 3.04
Metric Accuracy 72% 85% 83%
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The results reveal a trend of diminishing returns with increased computational effort. Specifically, the first configuration
(20 generations) achieved an accuracy of 85%, while the second configuration (30 generations) resulted in a slightly
lower accuracy of 83%.

. K, . A = . TN a
. g 9% 9 o 2. " g .
g w AL yEw g Wy A At SRR N SR Y e 2
* o . s-s § 1 2 =ué e s o L . " « 11 l"' - . '
. 1 . N ..;|.'i . H ‘! : 8 ..'lz..-.",“I:°.'-.
1 » . _l 4
oy P0G 0t st seild S HHRH BT HH BT
TEREE |=" 2122 e . ’. STEE =
MESE R ERE SRR TR CRERE R HIINBHRIBHEHTTH
204 & "_.: .l.=.0:.- 20 - 3. . _ll '_: l!!- : :ll
- - -
Do 2.5 5.4 1.5 10.0 12.5 1%.0 17.5 0 5 10 15 20 25 30
19 20+
14 19
1 ¥} 18
16 4 17 -
15 4t ' ' . v v ' r T T T =Y T T
Do 25 5.0 75 100 125 150 17.5 0 5 10 15 20 25 30
Case One Case Two

Figure 3 Optimization Results.

These findings suggest that increasing the population size, mutation rate, and number of generations beyond a certain
point may not yield proportional improvements in model accuracy. Despite this, both configurations significantly
outperformed the default parameter settings, which produced an accuracy of 72%. These results highlight the value of
parameter optimization while emphasizing the need to balance computational resources with expected gains. The next
section delves deeper into the statistical tests conducted to evaluate these outcomes and examines the trends observed.

3.2. Statistical Testing
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Figure 4 Paired T-test for both Speed and Flow

During the calibration process, candidate solutions from both simulations underwent rigorous statistical testing to
assess their significance for speed and flow. Non-parametric and parametric methods, including the paired t-test and
Wilcoxon signed-rank test, were applied to ensure consistency across the results. Following these tests, a scatter plot
was generated to explore the relationship between accuracy levels and statistical significance (p-values).

The observed trends, as depicted in the figures below, highlight a key distinction: while lower accuracy levels achieved

acceptable statistical significance for speed, they failed to meet the statistical significance requirements for flow in both
tests. This indicates that lower accuracy may satisfy the speed criterion but falls short for flow requirements.
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Conversely, at higher accuracy levels, particularly those exceeding the 80% threshold, the p-values consistently
surpassed the rejection region for both speed and flow across all tests. These findings suggest that an accuracy level of
80% or higher is generally sufficient to produce results that are statistically indistinguishable from the ground truth
data. This underscores the importance of achieving higher accuracy levels to ensure robust and reliable outcomes.
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Figure 5 Wilcoxon Signed Ranked Test for both Speed and Flow

4., Conclusion

This study demonstrates the effectiveness of using a genetic algorithm (GA) to calibrate a car-following model for
simulating traffic behavior. By optimizing key parameters in the Wiedemann 99 (W99) model, we significantly
improved its accuracy in replicating observed traffic conditions on a California freeway segment. The key takeaway is
the establishment of a benchmark for simulation accuracy. The results show that achieving an accuracy level of 80% or
higher ensures that simulated traffic speeds and flows are statistically indistinguishable from real-world data, validated
through paired T-tests and Wilcoxon signed-rank tests. This finding provides a clear threshold for model reliability,
essential for making sound decisions in transportation planning.

Additionally, the study highlights the importance of balancing optimization efforts with computational efficiency, as
further increases in accuracy yield diminishing returns. These results contribute to the growing body of knowledge on
traffic simulation calibration and set a foundation for future studies to refine and apply these methods in broader
contexts, such as the integration of connected and autonomous vehicles.

Ultimately, this research provides a framework for establishing acceptable levels of accuracy in traffic simulations,
ensuring their reliability for policy-making and infrastructure planning.
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