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Abstract 

Accurate calibration of traffic simulation models is essential for replicating observed traffic conditions, and subsequent 
optimization of decision-making processes and targeted investments in transportation infrastructure.  This study 
applies a genetic algorithm (GA) to optimize key parameters of the car-following model for a basic freeway segment in 
California, aiming to minimize the error between simulated and observed traffic data. Outputs generated during GA 
iterations were analyzed using paired T-tests and Wilcoxon signed-rank tests to compare simulated speed and flow 
against ground truth data. Accuracy for each sample was matched to its corresponding P-value, revealing a clear trend: 
when accuracy levels exceeded 80%, P-values for both speed and flow consistently rose above 0.05. This indicates that 
the simulated outputs became statistically indistinguishable from the observed field data after 80% accuracy. These 
findings demonstrate that combining statistical significance with accuracy metrics can effectively guide calibration 
processes and establish thresholds for acceptable simulation accuracy, contributing to a robust framework for traffic 
simulation studies. 

Keywords: Civil engineering; Highway engineering; Traffic simulation; Traffic flow modeling; Genetic algorithm 
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1. Introduction

Traffic simulation has become a cost-effective and indispensable tool for transportation planning, aiding engineers and 
planners in designing and managing efficient road systems [1, 2]. By modeling various scenarios, simulation provides 
insights into potential traffic conditions, operational performance, and safety outcomes, ultimately informing critical 
decisions for infrastructure investment and policy-making [3, 4]. However, the accuracy of these simulations in 
reflecting real-world conditions is paramount. A poorly calibrated model risks either underestimating or overestimating 
traffic performance/behavior, leading to unreliable future predictions and suboptimal outcomes for simulation-based 
studies. 

Accurate replication of real-world traffic behavior is particularly crucial in unique or complex scenarios, where reliable 
predictions can have significant implications. For instance, simulations may be employed to study traffic behavior under 
extreme weather conditions, evaluate the relative benefits of innovative road designs, or analyze the impact of emerging 
technologies such as connected and autonomous vehicles (CAVs) [5] on prevailing traffic conditions. Each of these cases 
demands a model that aligns closely with real-world data to ensure valid and actionable results. 

Over the years, researchers have developed a variety of techniques to calibrate simulation models and adjust driving 
behavior parameters. Most calibration efforts have relied on metaheuristic optimization algorithms such as genetic 
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algorithms, particle swarm optimization, and simulated annealing [6, 7], which systematically minimize the differences 
between simulated and observed traffic conditions. These methods automate the calibration process, achieving high 
accuracy and efficiency. On the other hand, some researchers have taken a more manual approach, employing grid 
search methods to iteratively test and adjust parameters [8, 9]. While these approaches have advanced the field of traffic 
simulation calibration, their focus has been primarily on minimizing errors, without defining an acceptable threshold 
for accuracy in simulation studies. 

Despite these advancements, no study has yet established a standard for what constitutes an acceptable level of 
accuracy in traffic simulation. This knowledge gap has significant implications, as simulations often serve as the 
foundation for policy decisions and infrastructure investments. Without a clear standard, there is a risk of over-reliance 
on models that may not meet the rigor required for reliable predictions. To address this gap, this study investigates the 
use of both parametric and non-parametric statistical methods to evaluate calibration accuracy. A basic freeway 
segment in California is used as a case study, providing a controlled environment for testing and analysis. 

This paper makes a novel contribution by not only applying metaheuristic optimization methods for calibration but also 
analyzing the statistical significance of accuracy levels achieved. By matching accuracy metrics with statistical 
significance, this study establishes a framework for determining acceptable thresholds for simulation accuracy. These 
findings aim to contribute to the standardization of accuracy metrics in traffic simulation, ensuring that future models 
achieve the reliability necessary for critical transportation planning decisions. 

2. Methods 

2.1. Study Area 

The study area is a segment of Interstate I-80, located in Los Angeles, California, within Yolo County, as illustrated in 
Figure 1. This section of the freeway is a four-lane basic segment with a total length of 5,280 feet. The study focused on 
the evening peak period, specifically from 4:00 PM to 5:00 PM on August 21, 2018. Field traffic data, including flow and 
speed, were collected and aggregated into 5-minute intervals.  

 

 

Figure 1 I-80 Freeway Segment in Yolo County (Google Earth) 

Table 1 summarizes the traffic flow observed in each lane during these intervals. The table also presents the total traffic 
flow across all four lanes and the average traffic speed for the segment. 
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Table 1 Collected Traffic from Sensors. 

Time Speed (mph) Flow (Veh/ 5 Minutes) 

 Lane 1 Lane 2 Lane 3 Speed Lane 1 Lane 2 Lane 3 Flow 

4:05 PM 58.30 56.30 55.60 56.90 172 150 112 434 

4:10 PM 57.70 57.70 54.00 56.80 161 160 107 428 

4:15 PM 57.50 58.90 53.00 56.80 172 159 119 450 

4:20 PM 58.10 58.20 58.70 58.30 171 154 122 447 

4:25 PM 56.70 58.30 54.20 56.60 168 138 108 414 

4:30 PM 41.00 43.60 43.90 42.80 139 134 128 401 

4:35 PM 46.20 46.70 46.00 46.30 160 148 127 435 

4:40 PM 53.10 54.30 54.50 53.90 159 145 116 420 

4:45 PM 55.70 56.30 56.60 56.20 182 164 130 476 

4:50 PM 54.90 57.40 56.80 56.30 167 160 131 458 

4:55 PM 36.30 44.40 44.00 41.70 117 132 122 371 

5:00 PM 33.30 38.70 37.40 36.40 136 131 126 393 

2.2. Car Following Model 

The Wiedemann 99 (W99) model is a psycho-physical car-following model develop in 1999, derived from the original 
Wiedemann model proposed in 1974 (W74) [10]. It consists of 10 parameters (CC0, CC1, ..., CC9), which can be 
calibrated (or adjusted) to represent driving behaviors of human driven vehicles (HDVs) on freeways. Among these, 
CC0, CC8, and CC9 are particularly crucial in determining the model's performance. The equation governing the model 
is given by: 

𝑣𝑛(𝑡 + ∆𝑡) = 𝑚𝑖𝑛 {𝑣𝑛(𝑡) + 3.6 × (𝐶𝐶8 +
𝐶𝐶8−𝐶𝐶9

80
× 𝑣𝑛(𝑡)) ∆𝑡; 𝑢𝑓, 3.6 ×

𝑆𝑛(𝑡)−𝐶𝐶0−𝐿𝑛−1

𝑣𝑛(𝑡)
; 𝑢𝑓 }                 (1) 

Where 𝑣𝑛(𝑡 + ∆𝑡) represents the speed of the subject vehicle after ∆𝑡 seconds relative to time step t, 𝑆𝑛(𝑡) is the distance 

between the subject and leading vehicle; 𝐿𝑛−1 denotes the length of the leading vehicle; and 𝑢𝑓 is the free-flow speed. 

The explanations for 10 parameters are described in Table 2. 

Table 2 Traffic Parameters 

W99     

Parameters Interpretation Default 

CC0 Average standstill distance (m) 1.4 

CC1 Headway (s) 1.2 

CC2 Longitudinal oscillation (m) 8 

CC3 Start of deceleration process (s) -12 

CC4 Minimal closing Δv (m/s) -1.5 

CC5 Minimal opening Δv (m/s) 2.1 

CC6 Speed dependency of oscillation (10−4 rad/s) 6 

CC7 Oscillation acceleration – m/s2 0.25 

CC8 Acceleration rate when starting (m/s2) 2 

CC9 Acceleration behavior at 80 km/h (m/s2) 1.5 
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2.3. Calibration 

A genetic algorithm (GA) is used to enhance the calibration of a microscopic traffic simulation model (the W99 car 
following model) by approaching near-global optimal solutions [11, 12]. The GA simulates biological evolution through 
selection, crossover, and mutation mechanisms. Initially, the algorithm begins with a randomly generated population of 
solutions, and in each iteration, higher-quality solutions have a greater chance of being selected for reproduction, 
producing new populations through crossover and mutation. This study employs two different GA configurations: the 
first uses a population size of 20, with a 20% mutation probability over 20 generations, while the second uses a 
population size of 30, with a 30% mutation probability over 30 generations. The objective is to assess individual GA 
members to obtain a sufficient sample size for generalization in the study. 

The calibration process is executed in Python, where binary chromosomes are randomly generated to represent feasible 
solutions. These chromosomes are then decoded into model parameters, which are fed into the SUMO simulation 
software. The objective function is evaluated by comparing the simulated traffic flow and speed data with observed real-
world values. The calibration continues until the maximum number of generations is reached or a predefined stopping 
condition is satisfied. This process is depicted in Figure 2 as adopted from. In this regard, the optimization framework 
is formulated as follows: 

 

Figure 2 GA Calibration process 

𝑓(𝑉𝑜𝑏𝑠, 𝑉𝑠𝑖𝑚)  

Subject to the constraints: 

𝑙𝑥𝑖
≤ 𝑥𝑖 ≤ 𝑢𝑥𝑖

, 𝑖 = 1 … 𝑛, 

Where 𝑥𝑖= the model parameters to be calibrated, 𝑓(𝑜𝑏𝑗)= objective function, 𝑉𝑜𝑏𝑠, 𝑉𝑠𝑖𝑚= observed and simulated value 
of model parameters, 𝑙𝑥𝑖

, 𝑢𝑥𝑖
= the respective lower and upper bounds of model parameter , n = number of variables. The 

objective function uses the Mean Absolute Normalized Error (MANE), which is provided by the following equation. The 
calibration using the flow and speed data as performance measures is formulated as follows: 

𝑀𝑖𝑛 𝑀𝐴𝑁𝐸(𝑞, 𝑣) =
1

𝑁
∑ ⬚𝑁

𝑖=1 (
|𝑞𝑜𝑏𝑠,𝑖−𝑞𝑠𝑖𝑚,𝑖|

𝑞𝑜𝑏𝑠,𝑖
+

|𝑣𝑜𝑏𝑠,𝑖−𝑣𝑠𝑖𝑚,𝑖|

𝑣𝑜𝑏𝑠,𝑖
)                  ……..           (2) 

Where 𝑞𝑜𝑏𝑠,𝑖 , 𝑞𝑠𝑖𝑚,𝑖 = observed and simulated traffic volume for a given time period i, 𝑣𝑜𝑏𝑠,𝑖 , 𝑣𝑠𝑖𝑚,𝑖 = observed and 
simulated traffic speed for a given time period i, N = total number of observations.  
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2.4. Statistical Testing  

During the calibration process, each candidate solution produced by the GA iterations was evaluated for statistical 
significance using both parametric and non-parametric methods to compare the simulated and observed traffic data. 
The two tests employed are described below: 

2.4.1. The Paired T-test 

The paired T-test is a parametric test used to compare the means of two related groups [13, 14], in this case, the 
simulated traffic data and the observed traffic data. This test evaluates whether there is a statistically significant 
difference between the two sets of data [15 ,16]. It assumes that the differences between the paired values are normally 
distributed. The null hypothesis for this test is that there is no significant difference between the simulated and observed 
traffic flow and speed data, and a p-value less than 0.05 indicates a significant difference. 

2.4.2. The Wilcoxon Signed-Rank Test 

The Wilcoxon signed-rank test, a non-parametric test, is used when the assumption of normality is not met and the data 
are paired [17, 18, 19]. This test compares the distributions of two related samples (simulated and observed data), 
ranking the absolute differences between the pairs and then testing whether the ranks of these differences significantly 
deviate from zero. It does not require the data to follow a normal distribution, making it suitable for cases where the 
data may be skewed or contain outliers. A p-value less than 0.05 indicates that the difference between the simulated 
and observed data is statistically significant. 

Both tests were utilized to assess the robustness and accuracy of the traffic simulation model in replicating real-world 
conditions. The paired T-test provides a direct comparison of means, while the Wilcoxon signed-rank test offers a more 
flexible approach when the data distribution does not meet parametric assumptions. 

3. Results 

3.1. Calibration Results 

As previously discussed, this study involved two distinct calibrations to analyze the impact of different parameter 
configurations on model performance. The first scenario employed a population size of 20, a mutation rate of 20%, and 
20 generations, while the second scenario used a population size of 30, a mutation rate of 30%, and 30 generations. 
Together, these two scenarios produced a total of 1,300 samples (400 from the first configuration and 900 from the 
second). The primary aim of these analyses was to generate a sufficiently large sample size to ensure that the findings 
are robust and generalizable. 

Table 3 Calibration Results 

W99   Parameters     

Parameters Interpretation Default Calibration 1 Calibration 2 

CC0 Average standstill distance (m) 1.40 0.50 1.54 

CC1 Headway (s) 1.20 1.18 1.03 

CC2 Longitudinal oscillation (m) 8.00 7.14 8.93 

CC3 Start of deceleration process (s) -12.00 10.72 12.60 

CC4 Minimal closing Δv (m/s) -1.50 -0.23 -0.35 

CC5 Minimal opening Δv (m/s) 2.10 0.25 0.44 

CC6 Speed dependency of oscillation (10−4 rad/s) 6.00 5.06 5.69 

CC7 Oscillation acceleration – m/s2 0.25 0.21 0.31 

CC8 Acceleration rate when starting (m/s2) 2.00 2.30 2.69 

CC9 Acceleration behavior at 80 km/h (m/s2) 1.50 2.98 3.04 

Metric Accuracy 72% 85% 83% 



World Journal of Advanced Research and Reviews, 2025, 27(02), 790-797 

795 

The results reveal a trend of diminishing returns with increased computational effort. Specifically, the first configuration 
(20 generations) achieved an accuracy of 85%, while the second configuration (30 generations) resulted in a slightly 
lower accuracy of 83%.  

  

Case One Case Two 

Figure 3 Optimization Results. 

These findings suggest that increasing the population size, mutation rate, and number of generations beyond a certain 
point may not yield proportional improvements in model accuracy. Despite this, both configurations significantly 
outperformed the default parameter settings, which produced an accuracy of 72%. These results highlight the value of 
parameter optimization while emphasizing the need to balance computational resources with expected gains. The next 
section delves deeper into the statistical tests conducted to evaluate these outcomes and examines the trends observed. 

3.2. Statistical Testing 

  

Figure 4 Paired T-test for both Speed and Flow 

During the calibration process, candidate solutions from both simulations underwent rigorous statistical testing to 
assess their significance for speed and flow. Non-parametric and parametric methods, including the paired t-test and 
Wilcoxon signed-rank test, were applied to ensure consistency across the results. Following these tests, a scatter plot 
was generated to explore the relationship between accuracy levels and statistical significance (p-values). 

The observed trends, as depicted in the figures below, highlight a key distinction: while lower accuracy levels achieved 
acceptable statistical significance for speed, they failed to meet the statistical significance requirements for flow in both 
tests. This indicates that lower accuracy may satisfy the speed criterion but falls short for flow requirements. 
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Conversely, at higher accuracy levels, particularly those exceeding the 80% threshold, the p-values consistently 
surpassed the rejection region for both speed and flow across all tests. These findings suggest that an accuracy level of 
80% or higher is generally sufficient to produce results that are statistically indistinguishable from the ground truth 
data. This underscores the importance of achieving higher accuracy levels to ensure robust and reliable outcomes. 

  

Figure 5 Wilcoxon Signed Ranked Test for both Speed and Flow 

4. Conclusion 

This study demonstrates the effectiveness of using a genetic algorithm (GA) to calibrate a car-following model for 
simulating traffic behavior. By optimizing key parameters in the Wiedemann 99 (W99) model, we significantly 
improved its accuracy in replicating observed traffic conditions on a California freeway segment. The key takeaway is 
the establishment of a benchmark for simulation accuracy. The results show that achieving an accuracy level of 80% or 
higher ensures that simulated traffic speeds and flows are statistically indistinguishable from real-world data, validated 
through paired T-tests and Wilcoxon signed-rank tests. This finding provides a clear threshold for model reliability, 
essential for making sound decisions in transportation planning. 

Additionally, the study highlights the importance of balancing optimization efforts with computational efficiency, as 
further increases in accuracy yield diminishing returns. These results contribute to the growing body of knowledge on 
traffic simulation calibration and set a foundation for future studies to refine and apply these methods in broader 
contexts, such as the integration of connected and autonomous vehicles. 

Ultimately, this research provides a framework for establishing acceptable levels of accuracy in traffic simulations, 
ensuring their reliability for policy-making and infrastructure planning. 
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