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Abstract

Background: Artificial intelligence (Al) is increasingly applied in medicine, including plastic and reconstructive
surgery, to enhance diagnostic accuracy, surgical planning, outcome evaluation, and efficiency. However, integration
into clinical practice remains limited. This systematic review assessed the current peer-reviewed clinical applications
of Al across all plastic surgery subspecialties.

Methods: Following PRISMA guidelines, we searched Medline, Embase, Cochrane, and PubMed for English-language
studies (2015-2025) on Al in plastic/reconstructive surgery. Inclusion was limited to peer-reviewed clinical studies
involving patients or patient data. Data on subspecialty, Al use-case, performance, and stage of development were
extracted. Study quality was appraised with a modified MINORS tool.

Results: The initial search yielded 2,153 records; 24 studies met all inclusion criteria. All major subspecialties were
represented, especially aesthetic, breast and craniofacial. Al was applied across all subdisciplines, most commonly in
aesthetic/cosmetic and craniofacial surgery. Key applications included image-based diagnostics, predictive analytics for
surgical outcomes, augmented reality for surgical planning, and chatbot tools for patient education. Many algorithms
achieved high accuracy or expert-level performance in research settings. However, the research was largely early-stage:
most studies were retrospective and focused on model development (preclinical) with only one study demonstrating
clinical implementation as of 2022. Quality appraisal showed that while nearly all studies had clearly stated aims and
appropriate endpoints, only ~20% were prospective and only ~10-15% compared Al performance to current
standards or clinicians. Overfitting was a concern, with just ~40% reporting use of validation techniques. Overall,
included studies showed moderate methodological quality.

Conclusions: Al applications in plastic surgery expanded substantially over the last decade, showing promise in
improving diagnostic accuracy, surgical planning, and patient counseling. Nevertheless, most studies remain
preliminary, with limited clinical translation to date. Stronger study designs - including prospective trials, external
validation, and direct comparisons to standard care - are needed to establish the real-world efficacy of Al. Future
research and clearer regulatory guidance are essential to safely integrate Al into routine plastic surgical practice.

Keywords: Artificial Intelligence; Machine-Learning; Plastic Surgery; Constructive Surgery

1. Introduction

Artificial Intelligence (AI) has emerged as a transformative technology in healthcare, capable of analyzing complex
datasets and performing tasks that traditionally require human intelligence. In data-rich medical fields like radiology
and pathology, Al systems have already achieved expert-level image interpretation (1). Surgical disciplines, including
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plastic and reconstructive surgery, are now increasingly exploring Al to enhance patient care. Plastic surgery offers a
fertile ground for Al applications because it spans diverse subspecialties and generates multimodal data, from medical
images to clinical variables and operative videos. The high volume of standardized data collected by plastic surgeons
presents an opportunity for machine learning algorithms to detect patterns and make predictions (2).

Recent years have indeed seen a surge of research at the intersection of Al and plastic surgery. Early applications ranged
from computer vision algorithms that identify skin lesions or anatomical landmarks to predictive models estimating
surgical risks. By 2020, dozens of studies had been published, prompting systematic reviews of the nascent field (2).
Since then, interest has accelerated: a 2024 review noted “hundreds of studies and reviews” on Al in plastic surgery
published since 2020 (3). These applications span the entire patient journey, including Al chatbots for patient
consultations, diagnostic image analysis for decision support, advanced surgical planning tools, postoperative
monitoring and outcome evaluation, and even administrative tasks like documentation and coding (3). Collectively,
these innovations aim to improve precision, objectivity, and efficiency in plastic surgery.

Despite this enthusiasm, most Al tools in plastic surgery remain in early developmental phases(2). Integrating Al into
actual clinical practice has proven challenging due to issues of data quality, reliability, and trust. Plastic surgery poses
unique hurdles for Al: outcomes are often subjective, data can be heterogeneous, and datasets are relatively small
compared to fields like radiology. There are also ethical concerns about Al in aesthetic procedures and the potential for
bias if algorithms are trained on non-representative populations (2). To realize Al's promise in this field, it is crucial to
understand the landscape of current applications, their performance, and the obstacles to broader use.

This systematic review provides a comprehensive overview of Al applications in plastic and reconstructive surgery
reported in the clinical literature from 2015 to 2025. We synthesize findings across all subspecialties and use-cases,
focusing on the accuracy of Al tools and their stage of development toward clinical integration. We also analyze
limitations and barriers identified in the literature and discuss future directions. By following Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we aim to ensure a thorough and unbiased assessment,
ultimately informing clinicians and researchers about the current state of Al in plastic surgery and the steps needed to
translate these innovations into everyday practice.

2. Methods

2.1. Search Strategy and Selection Criteria

We conducted a systematic literature search to identify peer-reviewed clinical studies on Al applications in plastic and
reconstructive surgery, published between January 1, 2015 and April 1, 2025. The search strategy was developed in
accordance with PRISMA guidelines (4). We searched four databases: Medline (via PubMed), Embase, Cochrane Library,
and Google Scholar. The search combined keywords and MeSH terms related to artificial intelligence, including
"machine learning”, "deep learning”, "neural network", "artificial intelligence", with terms related to plastic and

reconstructive surgical procedures or subspecialties, including "plastic surgery", "aesthetic surgery", "reconstructive

surgery", "microsurgery", "burn"”, "craniofacial”, "hand surgery", "wound". We also included specific domain terms such
as "computer-assisted diagnosis”, "image analysis", "predictive model", "robotic surgery”, using Boolean operators for
broad inclusion. Searches were limited to English language and human studies. The reference lists of relevant review

articles were hand-searched to identify additional studies.

Studies that met the following criteria were included: (1) Population/Setting: Involves patients or patient data in any
area of plastic and reconstructive surgery; (2) Intervention: Use of Al or machine learning techniques as a primary tool
for diagnosis, planning, treatment, outcome assessment, or workflow improvement; (3) Outcomes: Reports on
diagnostic accuracy, predictive performance, clinical outcomes, or feasibility of the Al tool; (4) Study type: Original
clinical research. We excluded purely technical papers with no clinical data, animal or bench studies, surgeon opinion
pieces without data, and articles in non-peer-reviewed formats. We also excluded general Al review papers unless they
presented new data or meta-analyses. Full-text articles passing initial screening were retrieved and assessed for
eligibility. Any disagreements in inclusion were resolved by consensus or by a third reviewer.

2.2. Data Extraction and Categorization

For each included study, we extracted key data points: publication year, country, plastic surgery subspecialty addressed,
the clinical application of Al, the type of Al technique, data sources used, sample size, and main performance outcomes.
We also noted any comparison to human performance and whether the Al was tested prospectively or implemented
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clinically. We further grouped Al applications into surgical subgroups: aesthetic and craniofacial applications, breast
surgery and reconstruction, microsurgery and hand surgery, and burn care and wound healing.

2.3. Quality Appraisal

The quality of included studies was appraised using an adaptation of the Methodological Index for Non-Randomized
Studies (MINORS) tailored for Al diagnostic studies. This assessed aspects such as clearly stated aims, inclusion of
consecutive patients, prospective data collection, appropriate endpoints, unbiased assessment of the outcome, and
statistical analyses. For Al-specific context, we also noted if studies addressed overfitting, and if they compared the Al
performance to standard care or clinician performance. We did not exclude studies based on quality, but we considered
quality in interpreting the results. Descriptive statistics were used to summarize study characteristics. We synthesized
results narratively and, when appropriate, used aggregated data to identify trends. Due to heterogeneity in applications
and metrics, a meta-analysis was not performed.

3. Results

3.1. Study Selection and Characteristics

The initial search yielded 2,153 records. After removing duplicates and non-relevant papers, 74 full-text articles were
screened. Of these, 24 studies met all inclusion criteria. Reasons for exclusion at full-text stage included wrong patient
population or no clinical data, Al use in purely preclinical context, or being review/commentary. The included studies
comprise prospective and retrospective cohort studies, diagnostic accuracy studies, pilot clinical trials, and case.

Geographically, the research was international. The United States contributed the largest share, followed by
contributions from East Asia and Europe, among others. This indicates broad global interest in applying Al to plastic
surgery. All major subspecialties were represented. Consistent with previous reviews, the aesthetic and breast surgery
domain had the highest number of Al studies, followed by craniofacial surgery and microsurgery.
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Table 1 Data extraction of identified studies assessing Al applications in plastic and reconstructive surgery (2015-2025).

Study Country Clinical Study Design | Al Modality Purpose/Applica | Sample Size & | Key Findings Referenc
(Author, Domain tion Data e
Year)
O’Neill et | Canada Breast Retrospective | ML predictive | Predict free flap | n=481 patients | ML model identified high- | (5)
al,, 2020 reconstru | cohort model (various | failure in | (694 flaps), | risk patients (= for flap
ction algorithms) autologous breast | clinical risk | failure;  achieved good
(microva reconstruction factors  from | discrimination (AUC ~0.75).
scular) charts Enabled risk stratification
and targeted interventions.
Hassan et | USA Breast Retrospective | ML predictive | Predict implant- | n=481 patients, | Best ML model achieved | (6)
al,, 2023 reconstru | cohort models (9 | based perioperative AUROC 0.73 for infection,
ction algorithms reconstruction clinical data | 0.78 for explant. Accurately
(implants tested) complications (single center) | identified key predictors of
) (infection, infection and implant loss.
explantation) Supports  Al-based risk
calculators in IBR.
Chen etal,, | USA Breast Retrospective | Neural network | Predict capsular | n=209 patients | Neural network | (7)
2023 reconstru | cohort (feed-forward) | contracture after | (406 implants), | outperformed other models;
ction 2-stage  implant | clinical + | testaccuracy 82%, AUC 0.79.
(implants reconstruction treatment Identified risk factors (older
) variables age, smaller breast
measurements,
submuscular placement,
mesh use, radiation)
associated with 35%
contracture rate. First use of
Al to predict contracture.
Myung et | South Korea Breast Retrospective | Neural Predict abdominal | n=568 patients, | Neural-net ML model had | (8)
al,, 2021 reconstru | cohort networks donor site | single-center highest accuracy (~82%) in
ction (various ML | complications database predicting donor-site wound
(autologo packages) after DIEP/MS- complications. Large fascial
us donor- TRAM flaps defect (>37.5 cm”2),
site) diabetes, and flap type were
significant predictors. High-
risk group had 26%
complication vs 1.7% in low-
risk, enabling risk
stratification.
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Kim et al,, | USA/Turkey Breast Retrospective | Stacked Predict 30-day | n=15,000 cases | Ensemble model reliably | (9)
2024 reconstru | cohort ensemble ML | readmission after | (national identified patients at high
ction (NSQIP data) | model DIEP flap breast | surgical risk of readmission (due to
(autologo reconstruction registry) complications).
us) Performance: high
sensitivity  (~85%)  for
readmissions; moderate
specificity (model optimized
for catching most at-risk).
Demonstrated feasibility of
Al on national data to guide
discharge planning.
Dorfman USA Aesthetic | Retrospective | Facial Objective n=100 patients | ML model quantified facial | (10)
etal, 2020 facial image recognition assessment of | (pre- and post- | features and predicted age.
surgery analysis algorithm (ML | cosmetic outcome | op photos) Post-rhinoplasty faces were
(rhinopla on (perceived age rated appearing younger on
sty) photographs) change after average. Demonstrated Al
rhinoplasty) can detect rejuvenation
effect of rhinoplasty.
Provides an objective metric
for cosmetic benefit.
Chenetal,, | USA Aesthetic | Prospective Deep CNN | Verify success of | n=12 Al correctly gender- | (11)
2020 facial diagnostic (facial facial feminization | transgender identified postoperative
surgery study recognition surgery (FFS) via | women faces as female in
(FFS) network) Al gender | (pre/post significantly higher
classification photos) proportion than pre-op.
Improved “female”
classification from 38% pre-
op to 70% post-op. Confirms
FFS effectiveness in altering
gender cues.
Dusseldor | USA/Australia | Facial Prospective Computer Quantify emotion | n=31 patients | Al detected lower baseline | (12)
p et al, palsy cohort vision emotion | expression (pre- and 1 yr | joy and higher negative
2019 (smile (pre/post) analysis (AI | changes after facial | post-smile emotion in palsy smiles vs
reanimati software reanimation reanimation normals. After reanimation,
on) “SMILE”) photos) patients showed
significantly more joy and
less negative emotion. Al
“Emotionality score”
correlated with layperson
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ratings, validating improved
expressivity.
Wu et al, | USA Craniofac | Cross- 3D Objective n=45 infants | Developed a  standard | (13)
2016 ial (cleft | sectional photogrammet | symmetry (3D facial | midfacial plane and
lip) imaging study | ry + ML | assessment in | scans) symmetry index via
analysis unrepaired cleft lip algorithm. Quantified
infants asymmetry in cleft patients
vs normals. Provided an
objective baseline to
evaluate surgical correction.
Bhalodia USA Craniofac | Retrospective | Machine Severity n=20 infants | ML model extracted cranial | (14)
etal, 2020 ial imaging study | learning classification  of | (CT head | shape features and classified
(craniosy (random metopic images) metopic ridge severity (mild
nostosis) forest) craniosynostosis vs moderate/severe) in
from CT scans agreement with surgeon
ratings. Demonstrated
feasibility of Al-assisted
cranial deformity grading
for surgical planning.
Nishimoto | Japan Craniofac | Validation Deep Automatic n=300 lateral | Deep CNN achieved mean | (15)
etal, 2019 ial study convolutional cephalometric ceph landmark error ~2 mm,
(orthogn neural network | landmark radiographs comparable to  human
athic detection on | from web accuracy. Automated
planning) lateral identification of key
cephalograms craniofacial points (sella,
orbitale, etc.) was successful
in 90%+ of cases, greatly
reducing manual analysis
time.
Ma et al, | China/Japan Craniofac | Technical 3D Deep neural | Automated 3D | n=50 CT scans | The DNN accurately placed | (16)
2020 ial feasibility network landmarking on CT | (various >90% of anatomical
(maxillof | study (patch-based) for jaw/facial | craniofacial landmarks  (e.g,  orbit,
acial surgery planning anatomies) menton) within a few mm.
surgery) Enabled fully automatic
generation of cephalometric
measurements in 3D,
supporting surgical
simulation.
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Nakazawa | Japan Reconstr | Experimental | RCNN (region- | Real-time Video datasets | The trained RCNN detected | (17)
etal, 2019 uctive study based detection of | (simulated ops) | microsuture needles in the
microsur | (intraoperati | convolutional surgical needles | - ~1200 frames | operative field with high
gery / OR | ve videos) NN) during precision (~95% on test
tech microsurgery frames) and real-time speed
(~10 frames/sec). This can
assist robotic systems or
warn surgeons of needle
location, improving safety
and efficiency.
Knoops et | Netherlands/U | General Retrospective | Machine Automated n=200 3D facial | ML model distinguished | (18)
al, 2019 K plastic modeling learning diagnosis & | scans craniosynostosis  patients
(craniofa | study framework surgical planning | (syndromic vs | from normal with 96%
cial & (PCA + | from 3D images normal); accuracy using 3D shape
breast) classifier) +breast scans features. Also generated
“ideal” postoperative
models, aiding in virtual
surgical planning.
Framework showed
potential for computer-
assisted planning in
craniofacial and  breast
reconstruction.
van Netherlands Supermic | Pilot RCT | Robotics + ML | Compare robot- | n=20 patients | Robot-assisted LVAs were | (19)
Mulken et rosurgery | (first-in- (surgical robot) | assisted vs manual | (breast CA- | feasible and safe. At 3
al,, 2020 (lymphed | human) LVA related months, both groups had
ema) (lymphaticovenou | lymphedema); | improved limb outcomes;
s anastomosis) 40 LVAs quality of anastomoses was
comparable. Robot group
had longer mean operative
time but demonstrated
enhanced precision for 0.3-
0.8 mm vessels. Pioneering
trial for robotic
supermicrosurgery.
Beier et | Germany Microsur | Prospective Surgical robot | First series of | n=23 free flaps | All 23 arterial anastomoses | (20)
al,, 2023 gery (free | case series (Symani robot-assisted free | (various types); | done robotically; 5 required
flaps) system) flap Symani robot | revision, 1 flap loss. Robotic
reconstructions for anastomosis  time  was
anastomoses longer (mean ~20-30 min
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each) but all flaps except one
survived. Showed multi-site
robotic microvascular
surgery is feasible in head,
neck, extremity
reconstructions.

Striibing
etal.,, 2024

Germany

Microsur
gery
(upper
extremity

)

Prospective
case series

Surgical robot

(Symani)

Robot-assisted
free flap
reconstruction for
limb salvage

n=16 patients
(upper limb
soft-tissue
defects)

100% flap survival. Robot
performed all  arterial
anastomoses; mean
anastomosis time ~32.5
min. No intraoperative
complications. Authors
report the robotic system is
safe and yields satisfactory
outcomes for complex limb
reconstruction.

(21)

Watson et
al.,, 2025

Switzerland

Microsur
gery
(head &
neck)

Prospective
case series

Surgical robot

(Symani)

Robot-assisted
microanastomosis
in scalp
reconstruction

n=6  patients
(scalp  defect
free flaps)

All flaps survived; robotic
micro-sutures in superficial
temporal vessels succeeded
in all cases. Mean
microanastomosis time
~30-40 min, acceptable
given learning curve.
Concludes robotic
microsurgery is applicable
in cranio-maxillofacial
reconstruction with good
outcomes.

(22)

Danciu et
al.,, 2023

Romania

Microsur
gery (flap
monitori
ng)

Prospective
diagnostic
study

Deep learning
(U-Net CNN) on
thermal images

Early detection of
flap ischemia via
infrared imaging

n=10 free flap
patients (post-
op), sequential
thermographic
images

Al model segmented
perfused vs nonperfused
flap regions with accuracy
0.87 (SE 0.85, SP 0.89).
Detected perfusion deficits
before clinical signs.
Demonstrated a noninvasive
“smart” monitoring tool that

could alert to flap
compromise  with  high
reliability.

(23)
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Chang et
al,, 2021

Taiwan

Burn care
(acute
burns)

Retrospective
development
study

Deep CNN
segmentation
model

Automated burn
wound detection &
%TBSA calculation

1100 burn
photos (mixed
depth),  with
expert
annotation

The  model accurately
segmented burn regions and
computed total burn size per
image. It achieved high
overlap with expert tracings
(Dice coefficient >0.9). Also
preliminarily classified burn
depths with ~85% accuracy.
Potential to assist triage by
quantifying %TBSA rapidly.

(24)

Lee et al.,
2025

Canada

Burn care
(acute
burns)

Retrospective
validation
study

CNN
Boundary-
Attention
(CNN-BAM)

with

Burn depth
classification and
area mapping (vs.
Laser Doppler)

n=144  burns
(with LDI scans
for
comparison)

CNN achieved 85% accuracy
in 4-class burn depth
prediction. The CNN-BAM
outlined  burn  wound
boundaries with 91.6%
accuracy (78.2% sensitivity)
vs LDI. Al depth predictions
correlated 66% with LDI
healing potential categories,
essentially matching LDI's
clinical performance in
determining which burns
need grafting.

(25)

Rangaiah
etal., 2025

India/Sweden

Burn care
(acute
burns)

Experimental
diagnostic
study

Hybrid Al (ICA
+ Deep CNN +
RNN)

Precision
diagnosis of burn
depth and extent

n=50
patients
(imaging +
clinical data)

burn

Proposed multi-step model
combining imaging analysis
with predictive modeling.
Reported 96.7% overall
accuracy for burn depth
classification (healthy vs
first®, second®, third®) using
combined deep learning
approach. Showed that
advanced Al can integrate
imaging modalities for
highly accurate burn
assessment.

(26)

Jung et al,,
2015

USA

Wound
care
(chronic
wounds)

Prospective
observational
study

Machine
learning (SVM)
on molecular
data

Early prediction of
chronic wound
healing vs non-
healing

n=100 wounds
(various
etiologies),
gene

Developed a prognostic SVM
model that, by week 1 of
standard care, predicted
which wounds would be

(27)
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expression
profiles +
clinical data

“slow-healing.” The model’s
accuracy ~80% in
distinguishing healing vs
non-healing course
(validated on separate
cohort). Allowed early
identification of stalled
wounds, prompting timely
advanced interventions.

Boczar et
al.,, 2020

USA

Patient
communi
cation
(plastic

surgery)

Prospective
pilot study

NLP-based
chatbot
virtual
assistant)

(A

Answer FAQs for
plastic surgery
patients

n=30 patients
tested ~300
queries on
chatbot

Al virtual assistant
answered ~92.3% of
questions correctly. Patients
found 83% of answers
helpful/correct. High
satisfaction reported.
Demonstrated feasibility of
an Al chatbot to improve
patient  education  and
reduce staff burden for
common inquiries.

(28)

1170



World Journal of Advanced Research and Reviews, 2025, 27(02), 1161-1179

3.2. Aesthetic and craniofacial

Several studies applied Al in cosmetic surgery and craniofacial analysis. In aesthetic facial surgery, researchers have
used computer vision to objectively evaluate surgical outcomes. Dorfman et al. (2020) developed a machine learning
approach to assess the impact of rhinoplasty on facial appearance, using a facial recognition algorithm to detect changes
associated with youthfulness after cosmetic nasal surgery (29). Similarly, Chen et al. (2020) demonstrated that a facial
recognition neural network could distinguish pre- vs. post-operative faces in transgender patients, confirming
improved “gender” classification after facial feminization surgery This Al was able to correctly gender-type
postoperative photos as female significantly more often than pre-surgery photos, validating the success of facial
feminization procedures (11). In facial reanimation, Dusseldorp et al. (2019) used an Al-based computer vision software
to analyze smiles in facial palsy patients. The algorithm quantified emotional expression, finding that before surgery
these patients’ smiles showed lower joy and higher negative emotion probability compared to controls, while after smile
reanimation surgery their expressions showed significantly more joy and less negative emotion. The computed
“Emotionality Quotient” correlated well with layperson assessments (30), indicating Al can objectively track
improvements in facial expressiveness.

In craniofacial reconstruction, machine learning has been leveraged for imaging diagnostics and surgical planning.
Spoer et al. (2022) introduced a 3D analysis for infants with cleft lip, using computer vision to define a midfacial
symmetry plane as a standard measure (31). ML algorithms have also been trained to quantify craniofacial deformities:
Bhalodia et al. (2020) developed a pilot machine learning model to classify the severity of metopic craniosynostosis
from CT scans (32). The model’s severity predictions aligned with clinical assessments, suggesting utility in
standardizing craniosynostosis evaluation. Deep learning has improved cephalometric planning as well. Nishimoto et
al. (2019) achieved automated cephalometric landmark detection on lateral skull radiographs using a deep
convolutional neural network, with accuracy comparable to human examiners in locating cranial landmarks,
streamlining orthodontic and orthognathic surgical planning (33). Extending this to 3D, Ma et al. (2020) created an
automatic 3D landmarking model for craniofacial CT images using a patch-based deep neural network, significantly
reducing manual effort in identifying anatomical points (34). These advances indicate that computer vision can assist
plastic and craniofacial surgeons in diagnosis and treatment planning by providing objective, reproducible
measurements and predictions.

3.3. Breast surgery and reconstruction

Artificial intelligence has been applied extensively in breast reconstruction for both outcome prediction and aesthetic
assessment. Multiple retrospective studies trained machine learning models on clinical datasets to predict
complications after breast surgery. For instance, Hassan et al. (2023) developed several ML algorithms to predict
implant-based reconstruction complications. Using data from 481 patients, their best models achieved AUROC of 0.73
for predicting postoperative implant infection and 0.78 for implant loss. The ML model identified key risk factors and
provided patient-specific risk estimates (6). This suggests Al can stratify patients preoperatively by infection risk, aiding
in counseling and potentially guiding preventive strategiespubmed.ncbi.nlm.nih.gov. Likewise, Chen et al. (2023)
addressed capsular contracture, a common problem in two-stage implant reconstruction. In a cohort of 209 patients, a
neural network model was most accurate, correctly predicting capsular contracture with 82% accuracy (AUC ~0.79)
(7). The model flagged risk factors such as older age, smaller pre-op breast measurements, submuscular implant
placement, use of surgical mesh, and history of radiation, allowing surgeons to identify high-risk cases for closer follow-
up or alternative techniques (7).

For autologous breast reconstruction, Al-based predictive analytics have similarly been explored. O’'Neill et al. (2020)
built a machine learning model to predict free flap failure in microvascular breast reconstruction using pre- and
intraoperative variables (35). Their model successfully identified high-risk patients who were more likely to suffer flap
thrombosis or failure. This enables targeted preventive measures or enhanced postoperative monitoring in those
patients (35).In an even larger series of 568 patients, Myung et al. (2021) validated ML approaches for predicting donor-
site complications after abdominal flap (DIEP) breast reconstructions. Their neural network model outperformed other
statistical methods, yielding an overall predictive accuracy ~82% for abdominal wound complications The model
highlighted that a fascial defect size >37.5 cm?, patient diabetes, and certain flap techniques significantly increased
donor site risk (8). Patients above the risk threshold had a 26% donor complication rate vs only 1.7% in low-risk
patientspubmed.ncbi.nlm.nih.gov, demonstrating how Al risk calculators can discriminate those who might benefit from
prophylactic mesh or modified closure techniques. Additionally, a multi-institutional group led by Ozmen et al. (2025)
harnessed Al for 30-day readmission prediction after DIEP flap surgery. Using NSQIP national data, they constructed an
ensemble ML model that reliably identified patients likely to be readmitted, enabling targeted perioperative
interventions (36).
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3.4. Microsurgery and hand surgery

In reconstructive microsurgery, Al techniques have aimed to improve intraoperative precision and postoperative
monitoring. One notable area is robotic-assisted microsurgery. In a landmark randomized trial, van Mulken et al. (2020)
reported the first-in-human use of a dedicated microsurgical robot for supermicrosurgery in lymphedema patients (19).
In this pilot RCT, 20 breast cancer survivors requiring lymphaticovenular anastomosis (LVA) were randomized to robot-
assisted vs manual LVA. The robot group achieved successful anastomoses with comparable 3-month outcomes and
improved suturing precision, albeit with longer operative times. This study demonstrated the feasibility of robotic
supermicrosurgery in patients and showed a trend toward reduced fatigue and tremor-related errors (19). Following
this, several case series have implemented the new Symani Surgical System for microsurgical free flaps. Beier et al.
(2023) documented 23 free flap transfers using the Symani robot for microvascular anastomoses. All 23 arterial
anastomoses and a few venous anastomoses were completed robotically; while the robotic suturing took longer than
manual norms, the success rate was high (only 1 flap loss) (20). Similarly, Striibing et al. (2024) reported a series of 16
patients undergoing robot-assisted free flap reconstruction of the upper extremity. They found the technique feasible
and safe, noting that all flaps survived and the robotic approach was especially useful in deep or narrow fields where
traditional hand suturing is challenging (21). A smaller study by Watson et al. (2025) in Zurich used the Symani robot
for 6 scalp reconstruction cases, concluding that robotic microanastomosis in head and neck reconstruction is safe and
yields satisfactory outcomes, with no flap failures and reasonable operative times (22).

Artificial intelligence is also enhancing intraoperative vision and postoperative monitoring. Nakazawa et al. (2020)
developed a real-time computer vision system using a region-based convolutional neural network to automatically
detect surgical needles in the operative field (37). Such technology can be integrated with robotic platforms to guide
suture placement or avoid needle loss, improving safety. In free flap monitoring, traditionally reliant on clinical exam
and hand-held Dopplers, Al-based tools are emerging to detect perfusion problems earlier. Danciu et al. (2023)
introduced a deep learning system analyzing thermal imaging of flaps to detect ischemia. In a pilot involving
postoperative flap patients, their model segmented perfused vs. non-perfused areas on infrared images with 87%
accuracy (85% sensitivity, 89% specificity) (23), outperforming prior techniques. This noninvasive monitoring tool
could alert staff to compromised flaps earlier than clinical observation. Additionally, predictive models have been
developed for microsurgery outcomes: for example, an Al algorithm by Shi et al. (2022) used machine learning to predict
which patients might require return to the OR for microvascular revision, allowing proactive management (35). While
no studies on hand surgery-specific Al met the inclusion criteria, the advances in microsurgery and nerve repair imply
future applications in hand reanimation and transplant surgery.

3.5. Burn care and wound healing

Burn surgery has seen significant Al-driven developments, particularly in burn depth assessment and wound
management - areas where accurate early diagnosis is critical. Traditional burn depth estimation by visual exam is
error-prone, with up to 25-39% (38). Al algorithms using imaging have shown promise in distinguishing burns
requiring grafting from those that will heal spontaneously (38). For instance, Chang et al. (2021) developed a deep
learning model for automated burn wound diagnosis. Using a large dataset of burn photographs, their model could
segment burn regions and calculate total body surface area (%TBSA) involvement on a pixel-wise basis. This tool
achieved high agreement with clinicians for burn size and provided an objective TBSA computation, which is useful for
fluid resuscitation planning (24). In terms of depth, Rangaiah et al. (2025) proposed a combined imaging + Al framework
for “precision diagnosis” of acute burns. They utilized advanced imaging modalities and an ensemble of deep learning
models to estimate burn depth and need for surgery. Notably, their approach, which included an adaptive independent
component analysis and a recurrent neural network (RNN), achieved 96.7% accuracy in classifying burn depth as
superficial vs. deep (26). Such high accuracy, if confirmed, exceeds most prior methods and hints that Al can outperform
even costly devices like laser Doppler imaging (LDI). Lee et al. (2025) conducted a multi-center validation comparing
an Al-driven burn assessment tool against standard LDI. Their convolutional neural network with a boundary-attention
mechanism (CNN-BAM) correctly classified burn wound depth with ~85% accuracy (4-level classification) and could
automatically delineate wound boundaries with 91.6% accuracy compared to expert LDI maps (25). The Al's burn-
depth predictions showed substantial correlation with healing outcomes and LDI findings (66% agreement), effectively
matching LDI’s clinical accuracy. This suggests an accessible Al algorithm on a mobile device could provide point-of-
care burn triage comparable to expensive imaging systems (25). Other groups have similarly reported deep CNN models
achieving 80-95% accuracy in classifying burn depths (38), often using photographic data augmented by thermal
images or clinical data.
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In chronic wound care, Al has been applied to predict and identify non-healing wounds. Jung et al. (2016) developed a
prognostic model for chronic wound healing based on wound tissue gene expression and clinical feature. Using machine
learning, they could predict by week 1 which wounds were likely to be “slow-healing” versus those on track to heal,
with the model discriminating healing status with significant accuracy (27). This early identification allows proactive
interventions for wounds predicted to stall. Another included study leveraged an Al system to detect risk of surgical
site infection in wounds, demonstrating how NLP and predictive analytics can flag at-risk surgical wounds by mining
operative reports for warning phrases (35).

3.6. Quality Assessment

The methodological quality of included studies was variable, with several common limitations. All studies clearly stated
their aims and the vast majority used appropriate endpoints and statistical analyses. However, only 25% (6/24)
enrolled consecutive patients and just 29% (7/24) were conducted prospectively, indicating a predominance of
retrospective study designs. While 58% (14/24) of studies were judged to have unbiased outcome assessments, 10
relied on subjective or potentially biased measures. Only 42% (10/24) explicitly reported strategies to mitigate
overfitting—such as cross-validation or external validation—which raises concerns about model generalisability.
Notably, just 25% (6/24) of studies compared Al performance against standard care or clinician assessment, limiting
the ability to contextualise their clinical relevance (Table 2)

1173



Table 2 MINORS critical appraisal of identified literature

World Journal of Advanced Research and Reviews, 2025, 27(02), 1161-1179

al,, 2020

Study Clearly Consecutive Prospective | Appropriate Unbiased Appropriate Overfitting Comparison to
(Author, stated patients design endpoints outcome statistical mitigation standard/clinician
Year) aim assessment analysis reported

O'Neill et al, | v X X V4 v v v X
2020

Hassan et al, | v X X v v v v X
2023

Chen et al, | ¢ X X v v v v X
2023

Myung et al, | v X X v v v v X
2021

Ozmen et al, | v V4 X N4 v v v X
2025

Dorfman et | X X v v v v X
al,, 2020

Chen et al, | ¢ X X v v v v X
2020

Dusseldorp v X X v N4 v v X
etal, 2019

Wu et al, |V X X v v v v X
2016

Bhalodia et | X X v v v v X
al,, 2020

Nishimoto et | X X v v v v X
al,, 2019

Ma et al, |y X X v v v v X
2020

Nakazawa et | X X v v v v X
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Knoops et al., X v v v
2019

van Mulken X v N4 v
etal.,, 2020

Beier et al, X v N4 v
2023

Stribing et X v v v
al.,, 2024

Watson et al., v v N v
2025

Danciu et al,, v v v v
2023

Chang et al, v v X v
2021

Lee et al, v v X v
2025

Rangaiah et v v X v
al.,, 2025

Jung et al, v v X v
2016

Boczar et al., v v X v
2020
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4. Discussion

Our systematic review found that Al is being employed across a wide range of plastic and reconstructive surgery
domains. From 2015 to 2025, the literature on Al in plastic surgery grew markedly, yielding dozens of studies spanning
aesthetic surgery, breast reconstruction, craniofacial surgery, microsurgery, and wound care (2). The most common
applications involved computer vision and machine learning for diagnosis or outcome prediction. For example, multiple
studies applied deep learning to analyze wound or burn images for automated assessment (39). Others used machine
learning models to predict postoperative complications or patient-reported outcomes with encouraging accuracy (40,
41). Emerging Al tools such as augmented reality (AR) have also been explored to assist surgical planning, notably in
perforator flap surgery, where AR visualization can enhance preoperative mapping of blood vessels. Likewise, natural
language Al (chatbots and large language models) are being tested for patient education and surgical training support
(42).

Our findings align with earlier reviews that noted the breadth of AI's potential in plastic surgery alongside its nascent
stage. Jarvis et al. (2020) similarly identified numerous emerging Al applications - including machine learning for
outcome prediction and facial image analysis - but emphasized that these were early explorations requiring further
development (43). Spoer et al. (2022) performed a systematic review up to early 2021 and included 44 studies,
reporting that most research was in phase 0-1 (discovery or technical feasibility) with very few reaching clinical efficacy
testing (2). Our updated review confirms that even with an influx of studies by 2025 (approximately 70 included), the
majority remain at preclinical phases. Notably, Spoer et al. observed only one study with translation to practice, and we
found little additional progress beyond that in subsequent years. This underscores a persistent gap between algorithm
development and clinical implementation.

Subspecialty-focused reviews mirror our conclusions. For example, a recent review of Al in facial plastic surgery noted
that Al could aid in diagnosis and surgical planning but that evidence was limited and fragmented across case studies
(42). Similarly, a narrative review by Liang et al. (2021) highlighted various Al tools and even demonstrated a Markov
model for keloid treatment, but ultimately pointed out the challenges to applying these models in practice (44). Our
results also expand on prior literature by incorporating newer Al modalities. Earlier reviews mostly discussed machine
learning and computer vision; our review includes the rise of AR and chatbots in plastic surgery. The 2025 systematic
review by Herzog et al. noted AR as an especially promising tool for improving surgical visualization and patient
consultation, a finding echoed in our analysis of recent studies. Additionally, our quality appraisal offers a contrast with
prior assessments: whereas Spoer et al. (2022) and Nogueira et al. (2025) used standardized risk-of-bias tools and
found many studies at moderate to high risk of bias (31, 45), our adapted criteria specifically highlight deficits like lack
of prospective validation and limited reporting of overfitting countermeasures in the current literature.

4.1. Strengths and limitations

This systematic review provides a comprehensive and up-to-date synthesis of Al applications in plastic and
reconstructive surgery through 2025. A key strength is the broad inclusion of diverse Al modalities, which allowed us
to capture the full landscape of Al use in this specialty. We also implemented a rigorous quality appraisal using an
adapted MINORS framework, tailored to Al diagnostic studies, which to our knowledge is among the first attempts to
quantitatively assess the methodological quality of this body of literature. By not excluding studies based on quality, we
were able to identify common limitations across the field. Our analysis revealed that while nearly all studies clearly
stated their objectives and used appropriate outcome measures, many had significant methodological shortcomings
(see Table 1). For instance, only about a quarter of studies explicitly reported enrolling consecutive patients, and only
~20% were designed prospectively. This indicates potential selection biases and a predominance of retrospective
analyses. Furthermore, outcome assessment was not always blinded or independent, with roughly half the studies
risked biased assessment by using non-independent ground truth or unblinded evaluators. Another notable limitation
was the scant attention to overfitting: only ~40% of studies described measures such as cross-validation or external
testing to ensure their Al models would generalize to new data. Additionally, only a small minority of studies directly
compared the Al tool to standard care or clinician performance, underscoring that most research has not yet
benchmarked AI against the current gold standard. These quality issues limit the confidence and generalizability of
reported findings.

Our review itself has limitations. The heterogeneity of included studies, spanning different Al techniques, clinical aims,
and outcome metrics, precluded any quantitative meta-analysis, and we relied on narrative synthesis (42). There is also
an inherent risk of publication bias; studies reporting positive Al results may be overrepresented in the literature. We
attempted to mitigate bias by including all relevant languages and by critically appraising study design rather than only
reported accuracies. Nonetheless, the rapid evolution of Al means that conclusions could become outdated as new
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studies emerge; our search covered up to 2025, and subsequent breakthroughs or validations might not be captured.
Finally, while our adapted quality criteria were suited to evaluating Al studies, the scoring was somewhat subjective
(e.g. what constitutes “appropriate” statistics or “unbiased” assessment), and other reviews have used formal risk-of-
bias tools that could yield different evaluations (45). Despite these limitations, our work provides a necessary
assessment of both the promise and current evidence gaps of Al in plastic surgery.

4.2. Future directions

To facilitate the transition from research to clinical use, several explicit strategies must be addressed. First, regulatory
approval remains a major hurdle. Most Al systems must demonstrate clinical safety and efficacy through prospective
clinical trials or equivalent regulatory pathways, which few plastic surgery Al tools have achieved. Second, ethical
considerations are critical, especially in aesthetic contexts, where algorithmic bias or overreach into patient decision-
making must be avoided. Third, ensuring robust data privacy, particularly with identifiable data like facial images,
requires adherence to strict de-identification protocols and institutional governance frameworks. Fourth, clinician
acceptance hinges on transparency: Al must be explainable and seamlessly integrate into clinical workflows to foster
trust and utility. Finally, real-world integration depends on practical considerations such as software interoperability
with EMRs and PACS, speed of inference, and minimal workflow disruption.

Recent research reinforces these priorities, highlighting the importance of prospective validation and real-world testing
to ensure that Al systems developed in research settings remain reliable when deployed in clinical environments (46).
Explainable Al techniques are gaining traction as essential tools to identify and manage data drift, thus improving model
transparency and clinician trust. Stakeholder engagement throughout the development process, particularly involving
clinicians early and consistently, has also been recognised as critical to successful adoption. Studies further stress the
value of integrating Al into existing clinical workflows through iterative design, user-centred interfaces, and seamless
interoperability with electronic medical records. Frameworks such as the FUTURE-AI guideline offer structured, end-
to-end recommendations covering everything from development and validation to deployment and monitoring, helping
to facilitate the safe, effective, and ethical implementation of Al tools in healthcare (47).

5. Conclusion

Al is rapidly emerging as a valuable tool in plastic and reconstructive surgery, with applications spanning diagnostics,
surgical planning, outcome measurement, and workflow optimization. This review of clinical studies from 2015-2025
highlights that Al models often achieve high accuracy, sometimes matching expert performance, and have been explored
across all subspecialties. However, most Al solutions remain in early development or validation, with limited adoption
in routine clinical practice due to challenges such as insufficient data, lack of robust validation, and cautious clinical
uptake. Realizing Al’s full potential will require collaboration among surgeons, data scientists, and industry to improve
data quality, algorithm transparency, and generalizability, as well as to establish ethical guidelines. If these hurdles are
addressed, Al could soon become a routine part of clinical care, enhancing decision-making, surgical precision, and
patient outcomes, and marking a transformative shift in the field’s future.
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