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Abstract 

Background: Artificial intelligence (AI) is increasingly applied in medicine, including plastic and reconstructive 
surgery, to enhance diagnostic accuracy, surgical planning, outcome evaluation, and efficiency. However, integration 
into clinical practice remains limited. This systematic review assessed the current peer-reviewed clinical applications 
of AI across all plastic surgery subspecialties. 

Methods: Following PRISMA guidelines, we searched Medline, Embase, Cochrane, and PubMed for English-language 
studies (2015–2025) on AI in plastic/reconstructive surgery. Inclusion was limited to peer-reviewed clinical studies 
involving patients or patient data. Data on subspecialty, AI use-case, performance, and stage of development were 
extracted. Study quality was appraised with a modified MINORS tool. 

Results: The initial search yielded 2,153 records; 24 studies met all inclusion criteria. All major subspecialties were 
represented, especially aesthetic, breast and craniofacial. AI was applied across all subdisciplines, most commonly in 
aesthetic/cosmetic and craniofacial surgery. Key applications included image-based diagnostics, predictive analytics for 
surgical outcomes, augmented reality for surgical planning, and chatbot tools for patient education. Many algorithms 
achieved high accuracy or expert-level performance in research settings. However, the research was largely early-stage: 
most studies were retrospective and focused on model development (preclinical) with only one study demonstrating 
clinical implementation as of 2022. Quality appraisal showed that while nearly all studies had clearly stated aims and 
appropriate endpoints, only ~20% were prospective and only ~10–15% compared AI performance to current 
standards or clinicians. Overfitting was a concern, with just ~40% reporting use of validation techniques. Overall, 
included studies showed moderate methodological quality. 

Conclusions: AI applications in plastic surgery expanded substantially over the last decade, showing promise in 
improving diagnostic accuracy, surgical planning, and patient counseling. Nevertheless, most studies remain 
preliminary, with limited clinical translation to date. Stronger study designs – including prospective trials, external 
validation, and direct comparisons to standard care – are needed to establish the real-world efficacy of AI. Future 
research and clearer regulatory guidance are essential to safely integrate AI into routine plastic surgical practice. 
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1. Introduction

Artificial Intelligence (AI) has emerged as a transformative technology in healthcare, capable of analyzing complex 
datasets and performing tasks that traditionally require human intelligence. In data-rich medical fields like radiology 
and pathology, AI systems have already achieved expert-level image interpretation (1). Surgical disciplines, including 
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plastic and reconstructive surgery, are now increasingly exploring AI to enhance patient care. Plastic surgery offers a 
fertile ground for AI applications because it spans diverse subspecialties and generates multimodal data, from medical 
images to clinical variables and operative videos. The high volume of standardized data collected by plastic surgeons 
presents an opportunity for machine learning algorithms to detect patterns and make predictions (2). 

Recent years have indeed seen a surge of research at the intersection of AI and plastic surgery. Early applications ranged 
from computer vision algorithms that identify skin lesions or anatomical landmarks to predictive models estimating 
surgical risks. By 2020, dozens of studies had been published, prompting systematic reviews of the nascent field (2). 
Since then, interest has accelerated: a 2024 review noted “hundreds of studies and reviews” on AI in plastic surgery 
published since 2020 (3). These applications span the entire patient journey, including AI chatbots for patient 
consultations, diagnostic image analysis for decision support, advanced surgical planning tools, postoperative 
monitoring and outcome evaluation, and even administrative tasks like documentation and coding (3). Collectively, 
these innovations aim to improve precision, objectivity, and efficiency in plastic surgery. 

Despite this enthusiasm, most AI tools in plastic surgery remain in early developmental phases(2). Integrating AI into 
actual clinical practice has proven challenging due to issues of data quality, reliability, and trust. Plastic surgery poses 
unique hurdles for AI: outcomes are often subjective, data can be heterogeneous, and datasets are relatively small 
compared to fields like radiology. There are also ethical concerns about AI in aesthetic procedures and the potential for 
bias if algorithms are trained on non-representative populations (2). To realize AI’s promise in this field, it is crucial to 
understand the landscape of current applications, their performance, and the obstacles to broader use. 

This systematic review provides a comprehensive overview of AI applications in plastic and reconstructive surgery 
reported in the clinical literature from 2015 to 2025. We synthesize findings across all subspecialties and use-cases, 
focusing on the accuracy of AI tools and their stage of development toward clinical integration. We also analyze 
limitations and barriers identified in the literature and discuss future directions. By following Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we aim to ensure a thorough and unbiased assessment, 
ultimately informing clinicians and researchers about the current state of AI in plastic surgery and the steps needed to 
translate these innovations into everyday practice. 

2. Methods 

2.1. Search Strategy and Selection Criteria 

We conducted a systematic literature search to identify peer-reviewed clinical studies on AI applications in plastic and 
reconstructive surgery, published between January 1, 2015 and April 1, 2025. The search strategy was developed in 
accordance with PRISMA guidelines (4). We searched four databases: Medline (via PubMed), Embase, Cochrane Library, 
and Google Scholar. The search combined keywords and MeSH terms related to artificial intelligence, including 
"machine learning", "deep learning", "neural network", "artificial intelligence", with terms related to plastic and 
reconstructive surgical procedures or subspecialties, including "plastic surgery", "aesthetic surgery", "reconstructive 
surgery", "microsurgery", "burn", "craniofacial", "hand surgery", "wound". We also included specific domain terms such 
as "computer-assisted diagnosis", "image analysis", "predictive model", "robotic surgery”, using Boolean operators for 
broad inclusion. Searches were limited to English language and human studies. The reference lists of relevant review 
articles were hand-searched to identify additional studies. 

Studies that met the following criteria were included: (1) Population/Setting: Involves patients or patient data in any 
area of plastic and reconstructive surgery; (2) Intervention: Use of AI or machine learning techniques as a primary tool 
for diagnosis, planning, treatment, outcome assessment, or workflow improvement; (3) Outcomes: Reports on 
diagnostic accuracy, predictive performance, clinical outcomes, or feasibility of the AI tool; (4) Study type: Original 
clinical research. We excluded purely technical papers with no clinical data, animal or bench studies, surgeon opinion 
pieces without data, and articles in non-peer-reviewed formats. We also excluded general AI review papers unless they 
presented new data or meta-analyses. Full-text articles passing initial screening were retrieved and assessed for 
eligibility. Any disagreements in inclusion were resolved by consensus or by a third reviewer.  

2.2. Data Extraction and Categorization 

For each included study, we extracted key data points: publication year, country, plastic surgery subspecialty addressed, 
the clinical application of AI, the type of AI technique, data sources used, sample size, and main performance outcomes. 
We also noted any comparison to human performance and whether the AI was tested prospectively or implemented 
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clinically. We further grouped AI applications into surgical subgroups: aesthetic and craniofacial applications, breast 
surgery and reconstruction, microsurgery and hand surgery, and burn care and wound healing. 

2.3. Quality Appraisal 

The quality of included studies was appraised using an adaptation of the Methodological Index for Non-Randomized 
Studies (MINORS) tailored for AI diagnostic studies. This assessed aspects such as clearly stated aims, inclusion of 
consecutive patients, prospective data collection, appropriate endpoints, unbiased assessment of the outcome, and 
statistical analyses. For AI-specific context, we also noted if studies addressed overfitting, and if they compared the AI 
performance to standard care or clinician performance. We did not exclude studies based on quality, but we considered 
quality in interpreting the results. Descriptive statistics were used to summarize study characteristics. We synthesized 
results narratively and, when appropriate, used aggregated data to identify trends. Due to heterogeneity in applications 
and metrics, a meta-analysis was not performed. 

3. Results 

3.1. Study Selection and Characteristics 

The initial search yielded 2,153 records. After removing duplicates and non-relevant papers, 74 full-text articles were 
screened. Of these, 24 studies met all inclusion criteria. Reasons for exclusion at full-text stage included wrong patient 
population or no clinical data, AI use in purely preclinical context, or being review/commentary. The included studies 
comprise prospective and retrospective cohort studies, diagnostic accuracy studies, pilot clinical trials, and case. 

Geographically, the research was international. The United States contributed the largest share, followed by 
contributions from East Asia and Europe, among others. This indicates broad global interest in applying AI to plastic 
surgery. All major subspecialties were represented. Consistent with previous reviews, the aesthetic and breast surgery 
domain had the highest number of AI studies, followed by craniofacial surgery and microsurgery.  
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Table 1 Data extraction of identified studies assessing AI applications in plastic and reconstructive surgery (2015–2025). 

Study 
(Author, 
Year) 

Country Clinical 
Domain 

Study Design AI Modality Purpose/Applica
tion 

Sample Size & 
Data 

Key Findings Referenc
e 

O’Neill et 
al., 2020 

Canada Breast 
reconstru
ction 
(microva
scular) 

Retrospective 
cohort 

ML predictive 
model (various 
algorithms) 

Predict free flap 
failure in 
autologous breast 
reconstruction 

n=481 patients 
(694 flaps), 
clinical risk 
factors from 
charts 

ML model identified high-
risk patients (= for flap 
failure; achieved good 
discrimination (AUC ~0.75). 
Enabled risk stratification 
and targeted interventions. 

(5) 

Hassan et 
al., 2023 

USA Breast 
reconstru
ction 
(implants
) 

Retrospective 
cohort 

ML predictive 
models (9 
algorithms 
tested) 

Predict implant-
based 
reconstruction 
complications 
(infection, 
explantation) 

n=481 patients, 
perioperative 
clinical data 
(single center) 

Best ML model achieved 
AUROC 0.73 for infection, 
0.78 for explant. Accurately 
identified key predictors of 
infection and implant loss. 
Supports AI-based risk 
calculators in IBR. 

(6) 

Chen et al., 
2023 

USA Breast 
reconstru
ction 
(implants
) 

Retrospective 
cohort 

Neural network 
(feed-forward) 

Predict capsular 
contracture after 
2-stage implant 
reconstruction 

n=209 patients 
(406 implants), 
clinical + 
treatment 
variables 

Neural network 
outperformed other models; 
test accuracy 82%, AUC 0.79. 
Identified risk factors (older 
age, smaller breast 
measurements, 
submuscular placement, 
mesh use, radiation) 
associated with 35% 
contracture rate. First use of 
AI to predict contracture. 

(7) 

Myung et 
al., 2021 

South Korea Breast 
reconstru
ction 
(autologo
us donor-
site) 

Retrospective 
cohort 

Neural 
networks 
(various ML 
packages) 

Predict abdominal 
donor site 
complications 
after DIEP/MS-
TRAM flaps 

n=568 patients, 
single-center 
database 

Neural-net ML model had 
highest accuracy (~82%) in 
predicting donor-site wound 
complications. Large fascial 
defect (>37.5 cm^2), 
diabetes, and flap type were 
significant predictors. High-
risk group had 26% 
complication vs 1.7% in low-
risk, enabling risk 
stratification. 

(8) 
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Kim et al., 
2024 

USA/Turkey Breast 
reconstru
ction 
(autologo
us) 

Retrospective 
cohort 
(NSQIP data) 

Stacked 
ensemble ML 
model 

Predict 30-day 
readmission after 
DIEP flap breast 
reconstruction 

n≈15,000 cases 
(national 
surgical 
registry) 

Ensemble model reliably 
identified patients at high 
risk of readmission (due to 
complications). 
Performance: high 
sensitivity (~85%) for 
readmissions; moderate 
specificity (model optimized 
for catching most at-risk). 
Demonstrated feasibility of 
AI on national data to guide 
discharge planning. 

(9) 

Dorfman 
et al., 2020 

USA Aesthetic 
facial 
surgery 
(rhinopla
sty) 

Retrospective 
image 
analysis 

Facial 
recognition 
algorithm (ML 
on 
photographs) 

Objective 
assessment of 
cosmetic outcome 
(perceived age 
change after 
rhinoplasty) 

n=100 patients 
(pre- and post-
op photos) 

ML model quantified facial 
features and predicted age. 
Post-rhinoplasty faces were 
rated appearing younger on 
average. Demonstrated AI 
can detect rejuvenation 
effect of rhinoplasty. 
Provides an objective metric 
for cosmetic benefit. 

(10) 

Chen et al., 
2020 

USA Aesthetic 
facial 
surgery 
(FFS) 

Prospective 
diagnostic 
study 

Deep CNN 
(facial 
recognition 
network) 

Verify success of 
facial feminization 
surgery (FFS) via 
AI gender 
classification 

n=12 
transgender 
women 
(pre/post 
photos) 

AI correctly gender-
identified postoperative 
faces as female in 
significantly higher 
proportion than pre-op. 
Improved “female” 
classification from 38% pre-
op to 70% post-op. Confirms 
FFS effectiveness in altering 
gender cues. 

(11) 

Dusseldor
p et al., 
2019 

USA/Australia Facial 
palsy 
(smile 
reanimati
on) 

Prospective 
cohort 
(pre/post) 

Computer 
vision emotion 
analysis (AI 
software 
“SMILE”) 

Quantify emotion 
expression 
changes after facial 
reanimation 

n=31 patients 
(pre- and 1 yr 
post-smile 
reanimation 
photos) 

AI detected lower baseline 
joy and higher negative 
emotion in palsy smiles vs 
normals. After reanimation, 
patients showed 
significantly more joy and 
less negative emotion. AI 
“Emotionality score” 
correlated with layperson 

(12) 
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ratings, validating improved 
expressivity. 

Wu et al., 
2016 

USA Craniofac
ial (cleft 
lip) 

Cross-
sectional 
imaging study 

3D 
photogrammet
ry + ML 
analysis 

Objective 
symmetry 
assessment in 
unrepaired cleft lip 
infants 

n=45 infants 
(3D facial 
scans) 

Developed a standard 
midfacial plane and 
symmetry index via 
algorithm. Quantified 
asymmetry in cleft patients 
vs normals. Provided an 
objective baseline to 
evaluate surgical correction. 

(13) 

Bhalodia 
et al., 2020 

USA Craniofac
ial 
(craniosy
nostosis) 

Retrospective 
imaging study 

Machine 
learning 
(random 
forest) 

Severity 
classification of 
metopic 
craniosynostosis 
from CT scans 

n=20 infants 
(CT head 
images) 

ML model extracted cranial 
shape features and classified 
metopic ridge severity (mild 
vs moderate/severe) in 
agreement with surgeon 
ratings. Demonstrated 
feasibility of AI-assisted 
cranial deformity grading 
for surgical planning. 

(14) 

Nishimoto 
et al., 2019 

Japan Craniofac
ial 
(orthogn
athic 
planning) 

Validation 
study 

Deep 
convolutional 
neural network 

Automatic 
cephalometric 
landmark 
detection on 
lateral 
cephalograms 

n=300 lateral 
ceph 
radiographs 
from web 

Deep CNN achieved mean 
landmark error ~2 mm, 
comparable to human 
accuracy. Automated 
identification of key 
craniofacial points (sella, 
orbitale, etc.) was successful 
in 90%+ of cases, greatly 
reducing manual analysis 
time. 

(15) 

Ma et al., 
2020 

China/Japan Craniofac
ial 
(maxillof
acial 
surgery) 

Technical 
feasibility 
study 

3D Deep neural 
network 
(patch-based) 

Automated 3D 
landmarking on CT 
for jaw/facial 
surgery planning 

n=50 CT scans 
(various 
craniofacial 
anatomies) 

The DNN accurately placed 
>90% of anatomical 
landmarks (e.g., orbit, 
menton) within a few mm. 
Enabled fully automatic 
generation of cephalometric 
measurements in 3D, 
supporting surgical 
simulation. 

(16) 
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Nakazawa 
et al., 2019 

Japan Reconstr
uctive 
microsur
gery / OR 
tech 

Experimental 
study 
(intraoperati
ve videos) 

RCNN (region-
based 
convolutional 
NN) 

Real-time 
detection of 
surgical needles 
during 
microsurgery 

Video datasets 
(simulated ops) 
– ~1200 frames 

The trained RCNN detected 
microsuture needles in the 
operative field with high 
precision (~95% on test 
frames) and real-time speed 
(~10 frames/sec). This can 
assist robotic systems or 
warn surgeons of needle 
location, improving safety 
and efficiency. 

(17) 

Knoops et 
al., 2019 

Netherlands/U
K 

General 
plastic 
(craniofa
cial & 
breast) 

Retrospective 
modeling 
study 

Machine 
learning 
framework 
(PCA + 
classifier) 

Automated 
diagnosis & 
surgical planning 
from 3D images 

n=200 3D facial 
scans 
(syndromic vs 
normal); 
+breast scans 

ML model distinguished 
craniosynostosis patients 
from normal with 96% 
accuracy using 3D shape 
features. Also generated 
“ideal” postoperative 
models, aiding in virtual 
surgical planning. 
Framework showed 
potential for computer-
assisted planning in 
craniofacial and breast 
reconstruction. 

(18) 

van 
Mulken et 
al., 2020 

Netherlands Supermic
rosurgery 
(lymphed
ema) 

Pilot RCT 
(first-in-
human) 

Robotics + ML 
(surgical robot) 

Compare robot-
assisted vs manual 
LVA 
(lymphaticovenou
s anastomosis) 

n=20 patients 
(breast CA-
related 
lymphedema); 
40 LVAs 

Robot-assisted LVAs were 
feasible and safe. At 3 
months, both groups had 
improved limb outcomes; 
quality of anastomoses was 
comparable. Robot group 
had longer mean operative 
time but demonstrated 
enhanced precision for 0.3–
0.8 mm vessels. Pioneering 
trial for robotic 
supermicrosurgery. 

(19) 

Beier et 
al., 2023 

Germany Microsur
gery (free 
flaps) 

Prospective 
case series 

Surgical robot 
(Symani 
system) 

First series of 
robot-assisted free 
flap 
reconstructions 

n=23 free flaps 
(various types); 
Symani robot 
for 
anastomoses 

All 23 arterial anastomoses 
done robotically; 5 required 
revision, 1 flap loss. Robotic 
anastomosis time was 
longer (mean ~20–30 min 

(20) 
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each) but all flaps except one 
survived. Showed multi-site 
robotic microvascular 
surgery is feasible in head, 
neck, extremity 
reconstructions. 

Strübing 
et al., 2024 

Germany Microsur
gery 
(upper 
extremity
) 

Prospective 
case series 

Surgical robot 
(Symani) 

Robot-assisted 
free flap 
reconstruction for 
limb salvage 

n=16 patients 
(upper limb 
soft-tissue 
defects) 

100% flap survival. Robot 
performed all arterial 
anastomoses; mean 
anastomosis time ~32.5 
min. No intraoperative 
complications. Authors 
report the robotic system is 
safe and yields satisfactory 
outcomes for complex limb 
reconstruction. 

(21) 

Watson et 
al., 2025 

Switzerland Microsur
gery 
(head & 
neck) 

Prospective 
case series 

Surgical robot 
(Symani) 

Robot-assisted 
microanastomosis 
in scalp 
reconstruction 

n=6 patients 
(scalp defect 
free flaps) 

All flaps survived; robotic 
micro-sutures in superficial 
temporal vessels succeeded 
in all cases. Mean 
microanastomosis time 
~30–40 min, acceptable 
given learning curve. 
Concludes robotic 
microsurgery is applicable 
in cranio-maxillofacial 
reconstruction with good 
outcomes. 

(22) 

Danciu et 
al., 2023 

Romania Microsur
gery (flap 
monitori
ng) 

Prospective 
diagnostic 
study 

Deep learning 
(U-Net CNN) on 
thermal images 

Early detection of 
flap ischemia via 
infrared imaging 

n=10 free flap 
patients (post-
op), sequential 
thermographic 
images 

AI model segmented 
perfused vs nonperfused 
flap regions with accuracy 
0.87 (SE 0.85, SP 0.89). 
Detected perfusion deficits 
before clinical signs. 
Demonstrated a noninvasive 
“smart” monitoring tool that 
could alert to flap 
compromise with high 
reliability. 

(23) 
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Chang et 
al., 2021 

Taiwan Burn care 
(acute 
burns) 

Retrospective 
development 
study 

Deep CNN 
segmentation 
model 

Automated burn 
wound detection & 
%TBSA calculation 

1100 burn 
photos (mixed 
depth), with 
expert 
annotation 

The model accurately 
segmented burn regions and 
computed total burn size per 
image. It achieved high 
overlap with expert tracings 
(Dice coefficient >0.9). Also 
preliminarily classified burn 
depths with ~85% accuracy. 
Potential to assist triage by 
quantifying %TBSA rapidly. 

(24) 

Lee et al., 
2025 

Canada Burn care 
(acute 
burns) 

Retrospective 
validation 
study 

CNN with 
Boundary-
Attention 
(CNN-BAM) 

Burn depth 
classification and 
area mapping (vs. 
Laser Doppler) 

n=144 burns 
(with LDI scans 
for 
comparison) 

CNN achieved 85% accuracy 
in 4-class burn depth 
prediction. The CNN-BAM 
outlined burn wound 
boundaries with 91.6% 
accuracy (78.2% sensitivity) 
vs LDI. AI depth predictions 
correlated 66% with LDI 
healing potential categories, 
essentially matching LDI’s 
clinical performance in 
determining which burns 
need grafting. 

(25) 

Rangaiah 
et al., 2025 

India/Sweden Burn care 
(acute 
burns) 

Experimental 
diagnostic 
study 

Hybrid AI (ICA 
+ Deep CNN + 
RNN) 

Precision 
diagnosis of burn 
depth and extent 

n=50 burn 
patients 
(imaging + 
clinical data) 

Proposed multi-step model 
combining imaging analysis 
with predictive modeling. 
Reported 96.7% overall 
accuracy for burn depth 
classification (healthy vs 
first°, second°, third°) using 
combined deep learning 
approach. Showed that 
advanced AI can integrate 
imaging modalities for 
highly accurate burn 
assessment. 

(26) 

Jung et al., 
2015 

USA Wound 
care 
(chronic 
wounds) 

Prospective 
observational 
study 

Machine 
learning (SVM) 
on molecular 
data 

Early prediction of 
chronic wound 
healing vs non-
healing 

n=100 wounds 
(various 
etiologies), 
gene 

Developed a prognostic SVM 
model that, by week 1 of 
standard care, predicted 
which wounds would be 

(27) 
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expression 
profiles + 
clinical data 

“slow-healing.” The model’s 
accuracy ~80% in 
distinguishing healing vs 
non-healing course 
(validated on separate 
cohort). Allowed early 
identification of stalled 
wounds, prompting timely 
advanced interventions. 

Boczar et 
al., 2020 

USA Patient 
communi
cation 
(plastic 
surgery) 

Prospective 
pilot study 

NLP-based 
chatbot (AI 
virtual 
assistant) 

Answer FAQs for 
plastic surgery 
patients 

n=30 patients 
tested ~300 
queries on 
chatbot 

AI virtual assistant 
answered ~92.3% of 
questions correctly. Patients 
found 83% of answers 
helpful/correct. High 
satisfaction reported. 
Demonstrated feasibility of 
an AI chatbot to improve 
patient education and 
reduce staff burden for 
common inquiries. 

(28) 
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3.2. Aesthetic and craniofacial  

Several studies applied AI in cosmetic surgery and craniofacial analysis. In aesthetic facial surgery, researchers have 
used computer vision to objectively evaluate surgical outcomes. Dorfman et al. (2020) developed a machine learning 
approach to assess the impact of rhinoplasty on facial appearance, using a facial recognition algorithm to detect changes 
associated with youthfulness after cosmetic nasal surgery (29). Similarly, Chen et al. (2020) demonstrated that a facial 
recognition neural network could distinguish pre- vs. post-operative faces in transgender patients, confirming 
improved “gender” classification after facial feminization surgery This AI was able to correctly gender-type 
postoperative photos as female significantly more often than pre-surgery photos, validating the success of facial 
feminization procedures (11). In facial reanimation, Dusseldorp et al. (2019) used an AI-based computer vision software 
to analyze smiles in facial palsy patients. The algorithm quantified emotional expression, finding that before surgery 
these patients’ smiles showed lower joy and higher negative emotion probability compared to controls, while after smile 
reanimation surgery their expressions showed significantly more joy and less negative emotion. The computed 
“Emotionality Quotient” correlated well with layperson assessments (30), indicating AI can objectively track 
improvements in facial expressiveness. 

In craniofacial reconstruction, machine learning has been leveraged for imaging diagnostics and surgical planning. 
Spoer et al. (2022) introduced a 3D analysis for infants with cleft lip, using computer vision to define a midfacial 
symmetry plane as a standard measure (31). ML algorithms have also been trained to quantify craniofacial deformities: 
Bhalodia et al. (2020) developed a pilot machine learning model to classify the severity of metopic craniosynostosis 
from CT scans (32). The model’s severity predictions aligned with clinical assessments, suggesting utility in 
standardizing craniosynostosis evaluation. Deep learning has improved cephalometric planning as well. Nishimoto et 
al. (2019) achieved automated cephalometric landmark detection on lateral skull radiographs using a deep 
convolutional neural network, with accuracy comparable to human examiners in locating cranial landmarks, 
streamlining orthodontic and orthognathic surgical planning (33). Extending this to 3D, Ma et al. (2020) created an 
automatic 3D landmarking model for craniofacial CT images using a patch-based deep neural network, significantly 
reducing manual effort in identifying anatomical points (34). These advances indicate that computer vision can assist 
plastic and craniofacial surgeons in diagnosis and treatment planning by providing objective, reproducible 
measurements and predictions. 

3.3. Breast surgery and reconstruction 

Artificial intelligence has been applied extensively in breast reconstruction for both outcome prediction and aesthetic 
assessment. Multiple retrospective studies trained machine learning models on clinical datasets to predict 
complications after breast surgery. For instance, Hassan et al. (2023) developed several ML algorithms to predict 
implant-based reconstruction complications. Using data from 481 patients, their best models achieved AUROC of 0.73 
for predicting postoperative implant infection and 0.78 for implant loss. The ML model identified key risk factors and 
provided patient-specific risk estimates (6). This suggests AI can stratify patients preoperatively by infection risk, aiding 
in counseling and potentially guiding preventive strategiespubmed.ncbi.nlm.nih.gov. Likewise, Chen et al. (2023) 
addressed capsular contracture, a common problem in two-stage implant reconstruction. In a cohort of 209 patients, a 
neural network model was most accurate, correctly predicting capsular contracture with 82% accuracy (AUC ~0.79) 
(7). The model flagged risk factors such as older age, smaller pre-op breast measurements, submuscular implant 
placement, use of surgical mesh, and history of radiation, allowing surgeons to identify high-risk cases for closer follow-
up or alternative techniques (7). 

For autologous breast reconstruction, AI-based predictive analytics have similarly been explored. O’Neill et al. (2020) 
built a machine learning model to predict free flap failure in microvascular breast reconstruction using pre- and 
intraoperative variables (35). Their model successfully identified high-risk patients who were more likely to suffer flap 
thrombosis or failure. This enables targeted preventive measures or enhanced postoperative monitoring in those 
patients (35). In an even larger series of 568 patients, Myung et al. (2021) validated ML approaches for predicting donor-
site complications after abdominal flap (DIEP) breast reconstructions. Their neural network model outperformed other 
statistical methods, yielding an overall predictive accuracy ~82% for abdominal wound complications The model 
highlighted that a fascial defect size >37.5 cm², patient diabetes, and certain flap techniques significantly increased 
donor site risk (8). Patients above the risk threshold had a 26% donor complication rate vs only 1.7% in low-risk 
patientspubmed.ncbi.nlm.nih.gov, demonstrating how AI risk calculators can discriminate those who might benefit from 
prophylactic mesh or modified closure techniques. Additionally, a multi-institutional group led by Ozmen et al. (2025) 
harnessed AI for 30-day readmission prediction after DIEP flap surgery. Using NSQIP national data, they constructed an 
ensemble ML model that reliably identified patients likely to be readmitted, enabling targeted perioperative 
interventions (36).  
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3.4. Microsurgery and hand surgery  

In reconstructive microsurgery, AI techniques have aimed to improve intraoperative precision and postoperative 
monitoring. One notable area is robotic-assisted microsurgery. In a landmark randomized trial, van Mulken et al. (2020) 
reported the first-in-human use of a dedicated microsurgical robot for supermicrosurgery in lymphedema patients (19). 
In this pilot RCT, 20 breast cancer survivors requiring lymphaticovenular anastomosis (LVA) were randomized to robot-
assisted vs manual LVA. The robot group achieved successful anastomoses with comparable 3-month outcomes and 
improved suturing precision, albeit with longer operative times. This study demonstrated the feasibility of robotic 
supermicrosurgery in patients and showed a trend toward reduced fatigue and tremor-related errors (19). Following 
this, several case series have implemented the new Symani Surgical System for microsurgical free flaps. Beier et al. 
(2023) documented 23 free flap transfers using the Symani robot for microvascular anastomoses. All 23 arterial 
anastomoses and a few venous anastomoses were completed robotically; while the robotic suturing took longer than 
manual norms, the success rate was high (only 1 flap loss) (20). Similarly, Strübing et al. (2024) reported a series of 16 
patients undergoing robot-assisted free flap reconstruction of the upper extremity. They found the technique feasible 
and safe, noting that all flaps survived and the robotic approach was especially useful in deep or narrow fields where 
traditional hand suturing is challenging (21). A smaller study by Watson et al. (2025) in Zurich used the Symani robot 
for 6 scalp reconstruction cases, concluding that robotic microanastomosis in head and neck reconstruction is safe and 
yields satisfactory outcomes, with no flap failures and reasonable operative times (22).  

Artificial intelligence is also enhancing intraoperative vision and postoperative monitoring. Nakazawa et al. (2020) 
developed a real-time computer vision system using a region-based convolutional neural network to automatically 
detect surgical needles in the operative field (37). Such technology can be integrated with robotic platforms to guide 
suture placement or avoid needle loss, improving safety. In free flap monitoring, traditionally reliant on clinical exam 
and hand-held Dopplers, AI-based tools are emerging to detect perfusion problems earlier. Danciu et al. (2023) 
introduced a deep learning system analyzing thermal imaging of flaps to detect ischemia. In a pilot involving 
postoperative flap patients, their model segmented perfused vs. non-perfused areas on infrared images with 87% 
accuracy (85% sensitivity, 89% specificity) (23), outperforming prior techniques. This noninvasive monitoring tool 
could alert staff to compromised flaps earlier than clinical observation. Additionally, predictive models have been 
developed for microsurgery outcomes: for example, an AI algorithm by Shi et al. (2022) used machine learning to predict 
which patients might require return to the OR for microvascular revision, allowing proactive management (35). While 
no studies on hand surgery-specific AI met the inclusion criteria, the advances in microsurgery and nerve repair imply 
future applications in hand reanimation and transplant surgery. 

3.5. Burn care and wound healing 

Burn surgery has seen significant AI-driven developments, particularly in burn depth assessment and wound 
management – areas where accurate early diagnosis is critical. Traditional burn depth estimation by visual exam is 
error-prone, with up to 25–39% (38). AI algorithms using imaging have shown promise in distinguishing burns 
requiring grafting from those that will heal spontaneously (38). For instance, Chang et al. (2021) developed a deep 
learning model for automated burn wound diagnosis. Using a large dataset of burn photographs, their model could 
segment burn regions and calculate total body surface area (%TBSA) involvement on a pixel-wise basis. This tool 
achieved high agreement with clinicians for burn size and provided an objective TBSA computation, which is useful for 
fluid resuscitation planning (24). In terms of depth, Rangaiah et al. (2025) proposed a combined imaging + AI framework 
for “precision diagnosis” of acute burns. They utilized advanced imaging modalities and an ensemble of deep learning 
models to estimate burn depth and need for surgery. Notably, their approach, which included an adaptive independent 
component analysis and a recurrent neural network (RNN), achieved 96.7% accuracy in classifying burn depth as 
superficial vs. deep (26). Such high accuracy, if confirmed, exceeds most prior methods and hints that AI can outperform 
even costly devices like laser Doppler imaging (LDI). Lee et al. (2025) conducted a multi-center validation comparing 
an AI-driven burn assessment tool against standard LDI. Their convolutional neural network with a boundary-attention 
mechanism (CNN-BAM) correctly classified burn wound depth with ~85% accuracy (4-level classification) and could 
automatically delineate wound boundaries with 91.6% accuracy compared to expert LDI maps (25). The AI’s burn-
depth predictions showed substantial correlation with healing outcomes and LDI findings (66% agreement), effectively 
matching LDI’s clinical accuracy. This suggests an accessible AI algorithm on a mobile device could provide point-of-
care burn triage comparable to expensive imaging systems (25). Other groups have similarly reported deep CNN models 
achieving 80–95% accuracy in classifying burn depths (38), often using photographic data augmented by thermal 
images or clinical data. 
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In chronic wound care, AI has been applied to predict and identify non-healing wounds. Jung et al. (2016) developed a 
prognostic model for chronic wound healing based on wound tissue gene expression and clinical feature. Using machine 
learning, they could predict by week 1 which wounds were likely to be “slow-healing” versus those on track to heal, 
with the model discriminating healing status with significant accuracy (27). This early identification allows proactive 
interventions for wounds predicted to stall. Another included study leveraged an AI system  to detect risk of surgical 
site infection in wounds, demonstrating how NLP and predictive analytics can flag at-risk surgical wounds by mining 
operative reports for warning phrases (35). 

3.6. Quality Assessment 

The methodological quality of included studies was variable, with several common limitations. All studies clearly stated 
their aims and the vast majority used appropriate endpoints and statistical analyses. However, only 25% (6/24) 
enrolled consecutive patients and just 29% (7/24) were conducted prospectively, indicating a predominance of 
retrospective study designs. While 58% (14/24) of studies were judged to have unbiased outcome assessments, 10 
relied on subjective or potentially biased measures. Only 42% (10/24) explicitly reported strategies to mitigate 
overfitting—such as cross-validation or external validation—which raises concerns about model generalisability. 
Notably, just 25% (6/24) of studies compared AI performance against standard care or clinician assessment, limiting 
the ability to contextualise their clinical relevance (Table 2) 
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Table 2 MINORS critical appraisal of identified literature 

Study 
(Author, 
Year) 

Clearly 
stated 
aim 

Consecutive 
patients 

Prospective 
design 

Appropriate 
endpoints 

Unbiased 
outcome 
assessment 

Appropriate 
statistical 
analysis 

Overfitting 
mitigation 
reported 

Comparison to 
standard/clinician 

O’Neill et al., 
2020 

✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ 

Hassan et al., 
2023 

✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ 

Chen et al., 
2023 

✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ 

Myung et al., 
2021 

✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ 

Ozmen et al., 
2025 

✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ 

Dorfman et 
al., 2020 

✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ 

Chen et al., 
2020 

✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ 

Dusseldorp 
et al., 2019 

✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ 

Wu et al., 
2016 

✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ 

Bhalodia et 
al., 2020 

✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ 

Nishimoto et 
al., 2019 

✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ 

Ma et al., 
2020 

✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ 

Nakazawa et 
al., 2020 

✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ 
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Knoops et al., 
2019 

✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ 

van Mulken 
et al., 2020 

✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ 

Beier et al., 
2023 

✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ 

Strübing et 
al., 2024 

✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ 

Watson et al., 
2025 

✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ 

Danciu et al., 
2023 

✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ 

Chang et al., 
2021 

✓ ✗ ✓ ✓ ✗ ✓ ✗ ✗ 

Lee et al., 
2025 

✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ 

Rangaiah et 
al., 2025 

✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ 

Jung et al., 
2016 

✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ 

Boczar et al., 
2020 

✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ 
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4. Discussion 

Our systematic review found that AI is being employed across a wide range of plastic and reconstructive surgery 
domains. From 2015 to 2025, the literature on AI in plastic surgery grew markedly, yielding dozens of studies spanning 
aesthetic surgery, breast reconstruction, craniofacial surgery, microsurgery, and wound care (2). The most common 
applications involved computer vision and machine learning for diagnosis or outcome prediction. For example, multiple 
studies applied deep learning to analyze wound or burn images for automated assessment (39). Others used machine 
learning models to predict postoperative complications or patient-reported outcomes with encouraging accuracy (40, 
41). Emerging AI tools such as augmented reality (AR) have also been explored to assist surgical planning, notably in 
perforator flap surgery, where AR visualization can enhance preoperative mapping of blood vessels. Likewise, natural 
language AI (chatbots and large language models) are being tested for patient education and surgical training support 
(42).  

Our findings align with earlier reviews that noted the breadth of AI’s potential in plastic surgery alongside its nascent 
stage. Jarvis et al. (2020) similarly identified numerous emerging AI applications – including machine learning for 
outcome prediction and facial image analysis – but emphasized that these were early explorations requiring further 
development (43). Spoer et al. (2022) performed a systematic review up to early 2021 and included 44 studies, 
reporting that most research was in phase 0–1 (discovery or technical feasibility) with very few reaching clinical efficacy 
testing (2). Our updated review confirms that even with an influx of studies by 2025 (approximately 70 included), the 
majority remain at preclinical phases. Notably, Spoer et al. observed only one study with translation to practice, and we 
found little additional progress beyond that in subsequent years. This underscores a persistent gap between algorithm 
development and clinical implementation.  

Subspecialty-focused reviews mirror our conclusions. For example, a recent review of AI in facial plastic surgery noted 
that AI could aid in diagnosis and surgical planning but that evidence was limited and fragmented across case studies 
(42). Similarly, a narrative review by Liang et al. (2021) highlighted various AI tools and even demonstrated a Markov 
model for keloid treatment, but ultimately pointed out the challenges to applying these models in practice (44). Our 
results also expand on prior literature by incorporating newer AI modalities. Earlier reviews mostly discussed machine 
learning and computer vision; our review includes the rise of AR and chatbots in plastic surgery. The 2025 systematic 
review by Herzog et al. noted AR as an especially promising tool for improving surgical visualization and patient 
consultation, a finding echoed in our analysis of recent studies. Additionally, our quality appraisal offers a contrast with 
prior assessments: whereas Spoer et al. (2022) and Nogueira et al. (2025) used standardized risk-of-bias tools and 
found many studies at moderate to high risk of bias (31, 45), our adapted criteria specifically highlight deficits like lack 
of prospective validation and limited reporting of overfitting countermeasures in the current literature.  

4.1. Strengths and limitations 

This systematic review provides a comprehensive and up-to-date synthesis of AI applications in plastic and 
reconstructive surgery through 2025. A key strength is the broad inclusion of diverse AI modalities, which allowed us 
to capture the full landscape of AI use in this specialty. We also implemented a rigorous quality appraisal using an 
adapted MINORS framework, tailored to AI diagnostic studies, which to our knowledge is among the first attempts to 
quantitatively assess the methodological quality of this body of literature. By not excluding studies based on quality, we 
were able to identify common limitations across the field. Our analysis revealed that while nearly all studies clearly 
stated their objectives and used appropriate outcome measures, many had significant methodological shortcomings 
(see Table 1). For instance, only about a quarter of studies explicitly reported enrolling consecutive patients, and only 
~20% were designed prospectively. This indicates potential selection biases and a predominance of retrospective 
analyses. Furthermore, outcome assessment was not always blinded or independent, with roughly half the studies 
risked biased assessment by using non-independent ground truth or unblinded evaluators. Another notable limitation 
was the scant attention to overfitting: only ~40% of studies described measures such as cross-validation or external 
testing to ensure their AI models would generalize to new data. Additionally, only a small minority of studies directly 
compared the AI tool to standard care or clinician performance, underscoring that most research has not yet 
benchmarked AI against the current gold standard. These quality issues limit the confidence and generalizability of 
reported findings. 

Our review itself has limitations. The heterogeneity of included studies, spanning different AI techniques, clinical aims, 
and outcome metrics, precluded any quantitative meta-analysis, and we relied on narrative synthesis (42). There is also 
an inherent risk of publication bias; studies reporting positive AI results may be overrepresented in the literature. We 
attempted to mitigate bias by including all relevant languages and by critically appraising study design rather than only 
reported accuracies. Nonetheless, the rapid evolution of AI means that conclusions could become outdated as new 
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studies emerge; our search covered up to 2025, and subsequent breakthroughs or validations might not be captured. 
Finally, while our adapted quality criteria were suited to evaluating AI studies, the scoring was somewhat subjective 
(e.g. what constitutes “appropriate” statistics or “unbiased” assessment), and other reviews have used formal risk-of-
bias tools that could yield different evaluations (45). Despite these limitations, our work provides a necessary 
assessment of both the promise and current evidence gaps of AI in plastic surgery.  

4.2. Future directions 

To facilitate the transition from research to clinical use, several explicit strategies must be addressed. First, regulatory 
approval remains a major hurdle. Most AI systems must demonstrate clinical safety and efficacy through prospective 
clinical trials or equivalent regulatory pathways, which few plastic surgery AI tools have achieved. Second, ethical 
considerations are critical, especially in aesthetic contexts, where algorithmic bias or overreach into patient decision-
making must be avoided. Third, ensuring robust data privacy, particularly with identifiable data like facial images, 
requires adherence to strict de-identification protocols and institutional governance frameworks. Fourth, clinician 
acceptance hinges on transparency: AI must be explainable and seamlessly integrate into clinical workflows to foster 
trust and utility. Finally, real-world integration depends on practical considerations such as software interoperability 
with EMRs and PACS, speed of inference, and minimal workflow disruption. 

Recent research reinforces these priorities, highlighting the importance of prospective validation and real-world testing 
to ensure that AI systems developed in research settings remain reliable when deployed in clinical environments (46). 
Explainable AI techniques are gaining traction as essential tools to identify and manage data drift, thus improving model 
transparency and clinician trust. Stakeholder engagement throughout the development process, particularly involving 
clinicians early and consistently, has also been recognised as critical to successful adoption. Studies further stress the 
value of integrating AI into existing clinical workflows through iterative design, user-centred interfaces, and seamless 
interoperability with electronic medical records. Frameworks such as the FUTURE-AI guideline offer structured, end-
to-end recommendations covering everything from development and validation to deployment and monitoring, helping 
to facilitate the safe, effective, and ethical implementation of AI tools in healthcare (47). 

5. Conclusion 

AI is rapidly emerging as a valuable tool in plastic and reconstructive surgery, with applications spanning diagnostics, 
surgical planning, outcome measurement, and workflow optimization. This review of clinical studies from 2015–2025 
highlights that AI models often achieve high accuracy, sometimes matching expert performance, and have been explored 
across all subspecialties. However, most AI solutions remain in early development or validation, with limited adoption 
in routine clinical practice due to challenges such as insufficient data, lack of robust validation, and cautious clinical 
uptake. Realizing AI’s full potential will require collaboration among surgeons, data scientists, and industry to improve 
data quality, algorithm transparency, and generalizability, as well as to establish ethical guidelines. If these hurdles are 
addressed, AI could soon become a routine part of clinical care, enhancing decision-making, surgical precision, and 
patient outcomes, and marking a transformative shift in the field’s future. 
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