

Chikungunya virus: A global re-emergence and review of the evidence

Enoch Chi Ngai Lim *

Translational Research Department, Specialist Medical Services Group, Earlwood, NSW 2206, Australia.

World Journal of Advanced Research and Reviews, 2025, 27(02), 1030-1034

Publication history: Received on 07 July 2025; revised on 12 August 2025; accepted on 15 August 2025

Article DOI: <https://doi.org/10.30574/wjarr.2025.27.2.2970>

Abstract

Chikungunya fever is a mosquito-borne viral disease that has re-emerged globally in recent decades, causing explosive outbreaks with significant public health impact. In 2025, parts of Southeast Asia and the Indian Ocean islands experienced major chikungunya outbreaks, underlining the continued threat of this arboviral infection. This narrative review aims to provide a comprehensive and up-to-date overview of chikungunya fever, covering epidemiology, pathogenesis, clinical manifestations, diagnosis, comparisons with similar conditions, treatment, and prevention strategies. Relevant literature was identified through database searches and authoritative health organization reports, with emphasis on studies from the last five years. In summary, chikungunya fever remains an important re-emerging disease worldwide. Strengthened surveillance, accurate diagnosis (distinguishing it from co-circulating arboviruses), and integrated mosquito control are vital to mitigate its impact, while new vaccines offer hope for future outbreak prevention.

Keywords: Chikungunya Fever; Review; Outbreaks; Diagnosis; Prevention

1. Introduction

Chikungunya fever is an acute febrile illness caused by the chikungunya virus (CHIKV), an RNA virus in the genus Alphavirus (family Gaviidae) [1]. The disease is transmitted to humans by *Aedes* mosquitoes (primarily *Aedes Egyptian Aedes albopictus*), the same vectors that spread dengue and Zika viruses [2]. The name “chikungunya” originates from the Kimonoed language of Tanzania, meaning “to become contorted,” describing the stooped posture of sufferers with severe joint pain [3]. First identified in Tanzania in 1952, CHIKV caused sporadic outbreaks in Africa and Asia for several decades [4].

Since the mid-2000s, chikungunya has dramatically re-emerged on a global scale. Notably, a mutation in the viral envelope (E1-A226V) enabled CHIKV to be transmitted more efficiently by *Ae. albopictus*, facilitating its spread to new regions [5]. Beginning around 2004–2005, large outbreaks occurred in Kenya and the Indian Ocean islands, including a 2005–2006 epidemic in La Réunion that affected an estimated 244,000–300,000 people [6]. The virus subsequently caused epidemics in South Asia in 2006–2008, and in late 2013 CHIKV reached the Americas [7]. As of 2025, over 110 countries across Asia, Africa, the Americas, and Europe have reported cases [8,9].

In 2025, outbreaks were reported in La Réunion, Mayotte, Mauritius, and southern China. Guangdong province recorded over 7,000 confirmed cases in July to early August 2025 [9]. These events highlight that chikungunya remains a pressing health issue in tropical and subtropical regions. In light of ongoing outbreaks and vaccine development, this article serves as a refresher and aims to consolidate recent evidence for clinicians, researchers, and public health professionals.

* Corresponding author: Enoch Chi Ngai Lim

2. Methodology

We conducted a narrative review using PubMed, Scopus, and Google Scholar. Search terms included “chikungunya,” “CHIKV,” “chikungunya fever,” “outbreak,” “clinical features,” “treatment,” “diagnosis,” and “vaccine.” Literature in the last five years from January 2020 to August 2025 was prioritized. Reports from WHO, CDC, ECDC, and national health agencies were also reviewed.

3. Epidemiology

Chikungunya was once confined to parts of Africa and Asia. Since 2004, it has expanded into the Americas and Europe [10,11]. Over 110 countries have reported local transmission [8]. A major outbreak occurred in La Réunion in 2005 [6], and a widespread epidemic followed in the Americas in 2013–2014 [12,13]. In 2023, Paraguay experienced a resurgence [14]. In 2025, southern China reported its largest outbreak [9]. Chikungunya outbreaks are explosive, with attack rates exceeding 30% [15]. Immunity after infection appears long-lasting [16]. Transmission peaks during rainy seasons when mosquito density rises [17]. Travelers can introduce the virus to new areas.

4. Pathogenesis

CHIKV enters through a mosquito bite, replicates in fibroblasts, and spreads systemically [18]. It targets muscle and joint tissues, leading to inflammation and pain [19]. Most patients recover within two weeks, but 30–50% develop persistent arthralgia due to immune dysregulation or antigen persistence [20,21]. Chronic arthritis resembles rheumatoid arthritis but usually lacks autoantibodies [22]. Severe cases involving the heart, brain, or liver are rare and occur mostly in infants and elderly adults [23,24]. The case fatality rate remains under 0.3% [25].

5. Clinical Manifestations

Typical features include abrupt onset of high fever, severe polyarthritides or arthralgia, rash, and fatigue [26]. Joint pain affects small joints symmetrically and may persist for weeks or longer [27]. Rash, headache, conjunctivitis, and mild bleeding can also occur [28]. As indicated in Table 1, the initial clinical presentation of Chikungunya fever may resemble that of other viral infections, such as dengue or Zika virus. Laboratory findings include leukopenia, mild thrombocytopenia, and elevated liver enzymes [29]. Chronic joint pain can persist beyond 3 months, especially in older adults [22]. Severe complications include encephalitis, seizures, and myocarditis [24].

Table 1 Comparison of Chikungunya, Dengue, and Zika Infections

Feature	Chikungunya	Dengue	Zika
Fever	High, abrupt	High, biphasic	Mild or absent
Arthralgia/Arthritis	Severe, persistent	Mild	Mild
Rash	Common	Common	Common
Hemorrhagic tendency	Rare	Common in severe cases	Rare
Conjunctivitis	Uncommon	Uncommon	Common
Thrombocytopenia	Mild	Marked	Mild
Chronic sequelae	Common	Rare	Rare

6. Diagnosis

RT-PCR detects viral RNA in blood during the first 7 days of illness [30]. Afterwards, serology is preferred; IgM antibodies appear by day 5 and persist for weeks. IgG indicates past exposure. In regions with dengue and Zika co-circulation, differential diagnosis is essential. Dengue often causes bleeding and low platelets, while Zika may present with milder symptoms and conjunctivitis [28].

7. Treatment

There is no specific antiviral treatment for chikungunya. Management is primarily supportive. Paracetamol is recommended for fever and pain relief. Aspirin and NSAIDs should be avoided initially to rule out dengue, which may co-circulate [3,8]. Once dengue is excluded, NSAIDs can be used to control inflammation. Chronic arthralgia may require a longer course of NSAIDs or corticosteroids, especially in severe or disabling cases [21,22]. Some patients benefit from physiotherapy during the chronic phase. Methotrexate or other DMARDs may be considered for persistent inflammatory arthritis resembling rheumatoid arthritis, although evidence is limited [20,21].

8. Prevention

Several prevention strategies are indicated in Table 2. Vector control remains the cornerstone of chikungunya prevention. This includes eliminating mosquito breeding sites, using insect repellents (e.g., DEET, picaridin), wearing protective clothing, and installing window screens [8,10]. Community engagement in sanitation efforts is essential to reduce Aedes populations. Travelers to endemic areas should take strict mosquito bite precautions. During outbreaks, infected individuals should avoid mosquito exposure to prevent further spread [8].

A single-dose, live-attenuated chikungunya vaccine (IXCHIQ/VLA1553) [31] for intramuscular injection was developed by Valneva and received approval in Europe, the United States, Canada, and the United Kingdom, for use in travellers aged 18 and older [32,33,34,35]. In 2024, Valneva received \$41.3 million grant to support broader access to the vaccine, and to evaluate its effectiveness in vulnerable groups, such as children and pregnant women [36]. A safe, effective, and widely available vaccine could significantly reduce the global disease burden.

Table 2 Key Prevention Strategies for Chikungunya

Strategy	Description
Vector control	Remove standing water, larvicides, fogging
Personal protection	Repellents, long clothing, mosquito nets
Surveillance and outbreak response	Early case detection and rapid mosquito control
Public education	Community awareness on prevention
Vaccination (future)	VLA1553 vaccine approved; others in development

9. Conclusion

Chikungunya fever continues to pose a significant public health challenge across endemic and newly affected regions. Its expanding geographic range, debilitating chronic symptoms, and absence of targeted antiviral therapy highlight the need for continued surveillance, prompt diagnosis, and effective vector control strategies. Recent progress in vaccine development offers hope for long-term prevention. Greater public awareness, health system readiness, and investment in research are essential to mitigate the impact of future outbreaks and reduce the disease burden globally.

Compliance with ethical standards

Disclosure of conflict of interest

The author declares no conflict of interest.

References

- [1] Powers, A.M., and Logue, C.H. (2007). Changing patterns of chikungunya virus: Re-emergence of a zoonotic arbovirus. *Journal of General Virology*, 88, 2363–2377. <https://doi.org/10.1099/vir.0.82858-0>
- [2] Weaver, S.C., and Lecuit, M. (2015). Chikungunya virus and the global spread of a mosquito-borne disease. *New England Journal of Medicine*, 372, 1231–1239. <https://doi.org/10.1056/NEJMra1406035>

- [3] Staples, J.E., Breiman, R.F., and Powers, A.M. (2009). Chikungunya fever: An epidemiological review of a re-emerging infectious disease. *Clinical Infectious Diseases*, 49, 942–948. <https://doi.org/10.1086/605496>
- [4] Robinson, M.C. (1955). An epidemic of virus disease in Southern Province, Tanganyika Territory, in 1952–53. I. Clinical features. *Transactions of the Royal Society of Tropical Medicine and Hygiene*, 49, 28–32.
- [5] Tsetsarkin, K.A., et al. (2007). A single mutation in chikungunya virus affects vector specificity and epidemic potential. *PLoS Pathogens*, 3, e201. <https://doi.org/10.1371/journal.ppat.0030201>
- [6] Renault, P., et al. (2007). A major epidemic of chikungunya virus infection on Réunion Island, France, 2005–06. *American Journal of Tropical Medicine and Hygiene*, 77, 727–731.
- [7] Leparc-Goffart, I., et al. (2014). Chikungunya in the Americas. *The Lancet*, 383, 514. [https://doi.org/10.1016/S0140-6736\(14\)60185-9](https://doi.org/10.1016/S0140-6736(14)60185-9)
- [8] World Health Organization (WHO). (2024). Chikungunya – Fact Sheet. Retrieved from <https://www.who.int/news-room/fact-sheets/detail/chikungunya> (accessed on 7 August 2025).
- [9] Al Jazeera. (2025). What is the chikungunya virus, how are countries such as China battling it? Retrieved from <https://www.aljazeera.com/news/2025/8/6/what-is-the-chikungunya-virus-how-are-countries-such-as-china-battling-it> (accessed on 6 August 2025).
- [10] Pan American Health Organization (PAHO). (2024). Chikungunya: Data, Maps, and Statistics. Retrieved from <https://www.paho.org/en/arbo-portal/chikungunya-data-and-analysis> (accessed on 7 August 2025).
- [11] European Centre for Disease Prevention and Control (ECDC). (2025). Chikungunya worldwide overview. Retrieved from <https://www.ecdc.europa.eu/en/chikungunya-monthly> (accessed on 7 August 2025).
- [12] Fischer, M., and Staples, J.E. (2014). Notes from the field: Chikungunya virus spreads in the Americas. *MMWR*, 63(22), 500–501.
- [13] Ferreira de Almeida, I., et al. (2023). The expansion of chikungunya in Brazil. *The Lancet Regional Health – Americas*, 25, 100571. <https://doi.org/10.1016/j.lana.2023.100571>
- [14] Torales, M., et al. (2023). Notes from the field: Chikungunya outbreak – Paraguay, 2022–2023. *MMWR Morbidity and Mortality Weekly Report*, 72(23), 636–638. <https://doi.org/10.15585/mmwr.mm7223a5>
- [15] Weaver, S.C., et al. (2012). Chikungunya virus and prospects for a vaccine. *Expert Review of Vaccines*, 11(9), 1087–1101. <https://doi.org/10.1586/erv.12.84>
- [16] Yoon, I.K., et al. (2015). High rate of subclinical chikungunya virus infection. *PLoS Neglected Tropical Diseases*, 9, e0003764. <https://doi.org/10.1371/journal.pntd.0003764>
- [17] Mordecai, E.A., et al. (2017). Detecting the impact of temperature on transmission. *PLoS Neglected Tropical Diseases*, 11, e0005568. <https://doi.org/10.1371/journal.pntd.0005568>
- [18] Schilte, C., et al. (2013). Long-term arthralgia after chikungunya. *PLoS Neglected Tropical Diseases*, 7, e2137. <https://doi.org/10.1371/journal.pntd.0002137>
- [19] Hoarau, J.J., et al. (2010). Persistent chronic inflammation and infection by chikungunya arthritogenic alphavirus in spite of a robust host immune response. *Journal of Immunology*, 184(10), 5914–5927. <https://doi.org/10.4049/jimmunol.0900255>
- [20] ouquillard, E., and Combe, B. (2009). A report of 21 cases of rheumatoid arthritis following chikungunya fever: A mean follow-up of two years. *Joint Bone Spine*, 76(6), 654–657. <https://doi.org/10.1016/j.jbspin.2009.08.005>
- [21] Miner, J.J., et al. (2015). Chikungunya viral arthritis in the United States: A mimic of seronegative rheumatoid arthritis. *Arthritis and Rheumatology*, 67(5), 1214–1220. <https://doi.org/10.1002/art.39027>
- [22] Chang, A.Y., et al. (2018). Frequency of chronic joint pain following chikungunya virus infection: A Colombian cohort study. *Arthritis and Rheumatology*, 70(4), 578–584. <https://doi.org/10.1002/art.40384>
- [23] Economopoulou, A., et al. (2009). Atypical chikungunya virus infections. *Epidemiology and Infection*, 137, 534–541. <https://doi.org/10.1017/S0950268808001167>
- [24] Gérardin, P., et al. (2014). Neurocognitive outcome of children exposed to perinatal mother-to-child chikungunya virus infection: The CHIMERE cohort study on Reunion Island. *PLoS Neglected Tropical Diseases*, 8(7), e2996. <https://doi.org/10.1371/journal.pntd.0002996>

- [25] Simon, F., et al. (2007). Chikungunya infection: An emerging rheumatism among travelers returned from Indian Ocean islands. Report of 47 cases. Medicine (Baltimore), 86(3), 123–137. <https://doi.org/10.1097/MD.0b013e31806010a5>
- [26] Thiberville, S.D., et al. (2013). Chikungunya fever: Epidemiology, clinical syndrome, pathogenesis and therapy. Antiviral Research, 99(3), 345–370. <https://doi.org/10.1016/j.antiviral.2013.06.009>
- [27] Brighton, S.W., et al. (1983). Chikungunya virus infection: A retrospective study of 107 cases. South African Medical Journal, 63, 313–315.
- [28] Staples, J.E., and Fischer, M. (2014). Chikungunya virus in the Americas – What a vectorborne pathogen can do. New England Journal of Medicine, 371(10), 887–889. <https://doi.org/10.1056/NEJMp1407698>
- [29] Burt, F.J., et al. (2012). Chikungunya: A re-emerging virus. The Lancet, 379, 662–671. [https://doi.org/10.1016/S0140-6736\(11\)60281-X](https://doi.org/10.1016/S0140-6736(11)60281-X)
- [30] World Health Organization (WHO). (2025). Chikungunya outbreak toolbox. Retrieved from <https://www.who.int/emergencies/outbreak-toolkit/disease-outbreak-toolboxes/chikungunya-outbreak-toolbox> (accessed on 7 August 2025).
- [31] Schneider, Martina., et al. (2023) Safety and immunogenicity of a single-shot live-attenuated chikungunya vaccine: a double-blind, multicentre, randomised, placebo-controlled, phase 3 trial. The Lancet, Volume 401, Issue 10394, 2138 – 2147. [http://doi.org/10.1016/S0140-6736\(23\)00641-4](https://doi.org/10.1016/S0140-6736(23)00641-4)
- [32] Valneva. Valneva's single-shot chikungunya vaccine – IXCHIQ®/ VLA1553. Retrieved from https://ec.europa.eu/commission/presscorner/detail/en/ip_24_3502 (accessed on 12 Aug 2025)
- [33] European Commission. Commission authorises Chikungunya vaccine and funds new mosquito eradication programme. Retrieved from https://ec.europa.eu/commission/presscorner/detail/en/ip_24_3502 (accessed on 12 Aug 2025)
- [34] Valneva. (2023). Valneva announces US FDA approval of world's first Chikungunya vaccine, IXCHIQ. Retrieved from https://valneva.com/wp-content/uploads/2023/11/2023_11_10_BLA_Approval_PR_EN_Final_-1.pdf (accessed on 12 Aug 2025)
- [35] Valneva. (2024). Valneva announces Health Canada approval of the world's first chikungunya vaccine, IXCHIQ. Retrieved from https://valneva.com/wp-content/uploads/2024/06/2024_06_24_Health_Canada_Approval_PR_EN_Final.pdf (accessed on 12 Aug 2025)
- [36] Valneva. (2025). Valneva receives marketing authorization in the UK for the world's first Chikungunya vaccine, IXCHIQ. Retrieved from <https://valneva.com/press-release/valneva-receives-marketing-authorization-in-the-uk-for-the-worlds-first-chikungunya-vaccine-ixchiq/> (accessed on 12 Aug 2025)
- [37] Valneva. (2024). CEPI expands partnership with Valneva with a \$41.3 million grant to support broader access to the world's first chikungunya vaccine. Retrieved from <https://valneva.com/press-release/cepi-expands-partnership-with-valneva-with-a-41-3-million-grant-to-support-broader-access-to-the-worlds-first-chikungunya-vaccine/> (accessed on 12 Aug 2025)