

The Impact of AI on Supply Chain Operations: A comparative analysis of traditional vs AI-enabled Processes

Samuel Omokhafe Yusuf ^{1,*}, Iselobhor Vincent Ikhine ², Richmond Nyamekeh ³, Olaitan Ebenezer Oluwadare ⁴, Bernard Afoakwah ⁵ and Nathan Yusuf ⁶

¹ Independent, Worcester, MA, USA.

² Independent, Chandler, AZ, USA.

³ Worcester Polytechnic Institute, Business School, Department, Worcester, MA, USA.

⁴ Division of Physics, Engineering, Mathematics, and Computer Science, Delaware State University, USA.

⁵ The Global School, Worcester Polytechnic Institute, Worcester, MA, USA.

⁶ Independent, Plateau State, Nigeria.

World Journal of Advanced Research and Reviews, 2025, 27(02), 1688-1700

Publication history: Received on 15 July 2025; revised on 20 August 2025; accepted on 23 August 2025

Article DOI: <https://doi.org/10.30574/wjarr.2025.27.2.3027>

Abstract

This study examines the transformative impact of artificial intelligence (AI) on supply chain operations through a comparative analysis of traditional versus AI-enabled processes. The research evaluates five operational areas: efficiency and cost reduction, decision-making, supply chain visibility, and customer experience. Findings demonstrate that AI-driven systems achieve superior performance, delivering 20-30% improvements in demand forecasting accuracy, 25-40% fewer disruptions compared to conventional methods. The analysis highlights AI's ability to enable real-time, data-driven decision-making and end-to-end supply chain transparency through technologies like IoT, machine learning, and blockchain. However, the study identifies significant adoption barriers including high implementation costs, data integration challenges, workforce skill gaps, and evolving regulatory requirements. Strategic recommendations are proposed to overcome these hurdles, including phased implementation approaches, data infrastructure modernization, workforce upskilling programs, and ethical AI governance frameworks. The paper also discusses critical policy considerations and future research directions, particularly in generative AI applications, autonomous supply networks, and sustainability optimization. As global supply chains face increasing complexity, this research suggests AI adoption is transitioning from competitive advantage to operational necessity. The study concludes that organizations which successfully implement AI while addressing adoption challenges will gain significant resilience, responsiveness, and cost advantages in an increasingly digital and volatile global marketplace. The findings provide valuable insights for practitioners seeking to harness AI's potential while navigating implementation complexities in supply chain transformation.

Keywords: Supply Chain Operations; Artificial Intelligence; Supply Chain Management, Operational Efficiency; Automation; Risk Management

1 Introduction

Supply chain operations are the backbone of global commerce, ensuring the efficient movement of goods from suppliers to consumers (Vidrová, 2020). Traditional supply chain management (SCM) relies on manual processes, historical data, and human decision-making, which often lead to inefficiencies, delays, and increased costs (Wu et al., 2025). With the rapid advancement of artificial intelligence (AI), businesses are increasingly adopting AI-driven solutions to enhance supply chain visibility, optimize logistics, and improve demand forecasting. This paper examines the transformative

* Corresponding author: Samuel Omokhafe Yusuf*

impact of AI on supply chain operations by comparing traditional methods with AI-enabled processes, highlighting key benefits, challenges, and future implications.

1.1. Background on Supply Chain Operations

Supply chains encompass procurement, production, warehousing, transportation, and distribution (Slam et al., 2023). Traditional SCM depends on static planning models, which struggle to adapt to dynamic market conditions, demand fluctuations, and disruptions such as pandemics or geopolitical crises. The lack of real-time data integration and reliance on manual interventions often result in inefficiencies, excess inventory, and poor responsiveness (Abhulimen et al., 2024).

Traditional supply chain management (SCM) faces several limitations that hinder efficiency and responsiveness. Manual tracking and documentation processes often result in human errors and delays, disrupting workflow (Abhulimen et al., 2024). Demand forecasting remains inefficient due to reliance on historical data rather than real-time analytics, leading to inaccurate predictions. Additionally, traditional SCM lacks advanced predictive capabilities, weakening risk management and leaving supply chains vulnerable to disruptions (Khedr and Sheeja, 2024). These inefficiencies contribute to high operational costs, as businesses struggle with overstocking or stockouts due to poor inventory optimization. These challenges highlight the need for smarter, data-driven solutions to enhance supply chain performance.

1.2. The Rise of AI in Supply Chain Optimization

Artificial intelligence (AI) is transforming supply chain management (SCM) through advanced technologies like machine learning (ML), predictive analytics, robotic process automation (RPA), and the Internet of Things (IoT) (Mohammed et al., 2025). These innovations enable predictive demand forecasting by analyzing real-time data, improving accuracy in inventory planning (Douaioui et al., 2024). Automated inventory management minimizes waste and optimizes stock levels, while AI-powered logistics routing dynamically adjusts to factors like traffic and weather for efficient deliveries. Additionally, AI enhances security through blockchain integration and anomaly detection, reducing fraud and mitigating risks (Ali and Mustafa, 2025). By leveraging these capabilities, businesses achieve greater efficiency, cost savings, and resilience in their supply chain operation.

1.3. Research Problem and Significance of the Study

Despite AI's growing adoption, many firms remain hesitant due to implementation costs, data privacy concerns, and workforce resistance. This study addresses the gap in comparative research between traditional and AI-driven supply chains, providing insights into operational efficiencies, cost savings, and scalability.

This study aims to:

- Compare the performance of traditional vs. AI-enabled supply chain processes.
- Assess the benefits and challenges of AI adoption in SCM.
- Examine real-world case studies of successful AI integration.

Key research questions include:

- How does AI improve supply chain efficiency compared to traditional methods?
- What barriers hinder AI adoption in SCM?
- What are the long-term implications of AI-driven supply chains?

This paper is organized into five sections. Section 2 examines literature on traditional and AI-driven supply chain management. Section 3 outlines the research methodology, while Section 4 conducts a comparative analysis. Finally, Section 5 presents key findings, discusses their implications, and suggests future research directions.

2 Literature Review

2.1. Traditional Supply Chain Operations

Traditional supply chain operations refer to conventional methods of managing the flow of goods, information, and finances across procurement, production, warehousing, and distribution networks (Mufutau and Mojisola, 2013). These systems are typically linear, relying on manual processes, static planning models, and historical data rather than real-

time insights. Key characteristics include sequential workflows, paper-based documentation, and human-dependent decision-making, which often result in delays, inefficiencies, and limited adaptability to disruptions (Čolaković, et al., 2023).

One of the most significant challenges in traditional supply chain management (SCM) is manual tracking and documentation, which increases the risk of errors, miscommunication, and delays (Amin and Kaur, 2024). Without automated systems, businesses struggle with inaccurate inventory records, misplaced shipments, and inefficient order processing. Additionally, inefficient demand forecasting remains a persistent issue, as traditional methods depend on past sales data rather than predictive analytics (Khedr and Sheeja, 2024). This leads to overstocking or stockouts, increasing carrying costs or lost sales opportunities.

Another critical limitation is the lack of real-time data integration, preventing supply chain managers from making timely, informed decisions (Lechler et al., 2019). Traditional SCM often operates in silos, with poor visibility across suppliers, manufacturers, and distributors. This disconnect results in poor risk management, as companies cannot proactively respond to disruptions such as supplier delays, demand spikes, or logistical bottlenecks. Furthermore, high operational costs stem from redundant processes, excess inventory, and labor-intensive tasks that could otherwise be optimized through automation (Khedr and Sheeja, 2024).

These challenges highlight the growing need for modernization in supply chain operations. While traditional methods have been the foundation of global trade for decades, their inefficiencies in today's fast-paced, data-driven economy underscore the necessity for advanced solutions, particularly AI-driven technologies, to enhance accuracy, agility, and cost-effectiveness in supply chain management.

2.2. AI in Supply Chain Management

The integration of Artificial Intelligence (AI) into supply chain management (SCM) has revolutionized traditional operations by introducing advanced capabilities that enhance efficiency, accuracy, and responsiveness. Key AI applications transforming SCM include machine learning (ML), predictive analytics, automation, the Internet of Things (IoT), and blockchain. Machine learning algorithms analyze vast datasets to identify patterns, enabling more accurate demand forecasting and inventory optimization. Predictive analytics leverages historical and real-time data to anticipate market fluctuations, supplier delays, and potential disruptions, allowing proactive decision-making. Automation, powered by AI-driven robotics and robotic process automation (RPA), streamlines repetitive tasks such as order processing, warehouse management, and logistics coordination, reducing human error and operational costs. IoT devices provide real-time tracking of goods, monitoring conditions like temperature and humidity for perishable items, while blockchain ensures transparency and security in transactions through immutable, decentralized ledgers.

The benefits of AI in supply chain optimization are substantial. Enhanced demand forecasting minimizes overstocking and stockouts, improving inventory turnover and reducing waste. Automated logistics routing dynamically adjusts delivery paths based on real-time factors like traffic and weather, cutting transportation costs and delays. Improved supplier relationship management is achieved through AI-powered risk assessment tools that evaluate supplier reliability and market conditions. Additionally, fraud detection and quality control are strengthened via AI-driven anomaly detection and computer vision systems that inspect products for defects. By integrating these technologies, businesses achieve end-to-end visibility, operational agility, and cost efficiency, making AI a cornerstone of modern, resilient supply chains.

As AI continues to evolve, its applications in SCM are expected to expand further, driving innovations such as autonomous warehouses, self-adjusting supply networks, and AI-powered procurement negotiations. The transformative potential of AI positions it as an indispensable tool for overcoming the limitations of traditional supply chain models and achieving sustainable competitive advantage.

2.3. Overview of Prior Research on AI Adoption in Supply Chains

The growing integration of artificial intelligence (AI) in supply chain management (SCM) has been extensively studied, with researchers examining its adoption patterns, implementation challenges, and measurable impacts. Prior studies highlight that AI adoption in supply chains has accelerated due to increasing global competition, supply chain disruptions, and the need for real-time decision-making. Research by Gupta et al. (2021) found that early adopters of AI in logistics and inventory management achieved a 15-30% reduction in operational costs, along with improved delivery accuracy. Similarly, a case study on Amazon's AI-driven warehousing systems demonstrated a 40% increase in efficiency through robotic automation and machine learning-based demand forecasting (Johnson & Lee, 2022).

However, academic literature also identifies key barriers to AI adoption in SCM. A survey by McKinsey (2023) revealed that 60% of firms face challenges related to data quality and integration, as AI models require clean, structured, and real-time data to function effectively. Additionally, high implementation costs and a lack of skilled personnel hinder widespread adoption, particularly among small and medium-sized enterprises (SMEs) (Chen & Wang, 2022). Resistance to change within organizational culture further complicates AI integration, as employees often distrust automated decision-making systems (Taylor et al., 2021). Despite these obstacles, research suggests that companies overcoming these barriers gain significant competitive advantages, including enhanced supply chain resilience and customer satisfaction.

Recent studies also explore sector-specific AI applications. In manufacturing, AI-powered predictive maintenance has reduced machine downtime by up to 50%, while in retail, dynamic pricing algorithms have optimized profit margins by adjusting prices in real time based on demand fluctuations (Kumar & Zhang, 2023). Blockchain-AI integrations have also gained attention for improving traceability in food and pharmaceutical supply chains, ensuring compliance with safety standards (OECD, 2023).

Looking ahead, scholars emphasize the need for scalable AI solutions tailored to diverse industries, along with ethical frameworks to address data privacy and algorithmic bias concerns (WEF, 2023). Future research directions include the role of generative AI in supplier negotiations and the potential for autonomous supply chains requiring minimal human intervention. Collectively, prior research underscores AI's transformative potential in SCM while advocating for strategic, inclusive adoption approaches to maximize benefits across global supply networks.

3 Research Methodology

This study employs a qualitative research design based on a comprehensive literature review to compare traditional supply chain management (SCM) with AI-enabled SCM. The methodology involves a comparative analysis approach, systematically evaluating existing scholarly articles, industry reports, and case studies to identify key differences in efficiency, cost, and adaptability between the two models. By synthesizing findings from peer-reviewed journals, books, and reputable databases the study ensures a robust foundation for analysis.

The justification for this methodology lies in its ability to consolidate diverse perspectives without the constraints of primary data collection, allowing for broader theoretical insights (Synder, 2019). A literature-based approach is particularly suitable for emerging fields like AI in SCM, where rapid technological evolution makes longitudinal or experimental studies challenging.

However, the study has limitations. Reliance on secondary data may introduce bias from source selection, and the absence of primary research limits granular insights into firm-specific challenges (Baldwin et al., 2022). Additionally, the fast-paced nature of AI innovation means some findings may quickly become outdated. Despite these constraints, the methodology provides a structured, evidence-based comparison that informs both academia and industry on AI's transformative role in SCM.

4 Comparative Analysis

4.1. Operational Efficiency and Cost Reduction

4.1.1 *Traditional: Manual processes, higher costs, inefficiencies*

Traditional supply chain processes remain fundamentally constrained by their reliance on manual operations, creating systemic inefficiencies that permeate every aspect of the value chain (Khedr and Sheeja, 2024). At the core of these challenges lies the labor-intensive nature of critical functions including inventory management, purchase order processing, and shipment coordination (Khedr and Sheeja, 2024). Each human touchpoint introduces potential bottlenecks, with data entry errors and processing delays becoming endemic issues that compound throughout the supply network. The absence of automated systems forces personnel to dedicate disproportionate time to administrative tasks like paper-based documentation and spreadsheet management, diverting attention from higher-value strategic activities (Xu et al., 2024). Transportation logistics present particular difficulties, with route planning often based on static schedules rather than real-time variables, resulting in suboptimal vehicle utilization and excessive fuel expenditures. Warehouse operations similarly suffer from inefficient space utilization and labor allocation, as manual stock-keeping methods struggle to maintain accurate inventory records (Wynn, 2021). These operational deficiencies manifest in elevated carrying costs, diminished throughput capacity, and eroding profit margins. Most

critically, the inflexibility of traditional systems severely limits an organization's ability to rapidly scale operations or adapt to sudden market shifts, whether demand surges or supply disruptions (Agrawal et al., 2023). The cumulative effect is a supply chain model that is increasingly untenable in today's fast-paced, data-driven business environment, where competitors leveraging digital transformation gain significant advantages in both cost structure and operational agility.

4.2. AI-enabled: Automation, predictive maintenance, cost savings

In contrast, AI-driven supply chains represent a transformative leap forward in operational efficiency through intelligent automation and data-driven optimization. By deploying machine learning algorithms, these advanced systems process enormous volumes of structured and unstructured data to uncover hidden inefficiencies and prescribe targeted improvements across the entire supply network (Culot et al., 2024). Robotic Process Automation (RPA) handles routine transactional work with perfect accuracy, eliminating human errors in order fulfillment, invoicing, and inventory reconciliation while freeing staff for higher-value analytical roles (Venigandla et al., 2023). The integration of IoT sensors with AI-powered predictive maintenance creates a self-monitoring ecosystem that can anticipate equipment failures days or weeks in advance, scheduling proactive repairs during planned downtime. In transportation logistics, AI systems dynamically recalibrate delivery routes by continuously analyzing real-time traffic patterns, weather conditions, fuel prices, and even driver availability, adjusting plans moment-to-moment to maintain optimal efficiency (Onotole et al., 2025). These technological synergies produce compounding benefits; industry leaders report reductions in logistics costs by 15-30% (Mohsen, 2023; Ismaeil and Lalla, 2024), improvements in demand forecasting accuracy, and fewer stockouts (Ugbebor et al., 2024). The AI advantage extends beyond cost savings to create more resilient, responsive supply chains capable of self-optimization in volatile market conditions. By transforming raw data into actionable intelligence, AI enables supply chains to achieve unprecedented levels of precision, productivity, and predictive capability that simply cannot be replicated through manual processes.

The transformation from manual to AI-enhanced operations represents a paradigm shift in supply chain management. Where traditional methods incur hidden costs through inefficiency and error-proneness, AI implementations deliver measurable improvements in both productivity and expense management. This technological evolution enables businesses to reallocate resources strategically while maintaining competitive pricing and service levels in an increasingly demanding global marketplace.

4.3. Decision-Making and Data-Driven Insights

4.3.1 Traditional Supply Chain: Reactive Decision-Making and Historical Data Reliance

Traditional supply chain management relies on reactive decision-making, where strategies are formulated based on historical data rather than real-time intelligence (Ajohani et al., 2023). This approach creates significant limitations, as businesses depend on past trends to forecast demand, manage inventory, and allocate resources, often leading to misaligned supply and demand (Khedr and Sheeja, 2024). For example, procurement teams may place orders based on last year's sales figures, failing to account for sudden market shifts, emerging consumer preferences, or supply disruptions. This backward-looking methodology results in inefficiencies such as overstocking, stockouts, and missed sales opportunities.

Additionally, traditional supply chains suffer from fragmented data systems, where critical information resides in departmental silos rather than a unified platform (Xia et al., 2023). Without real-time visibility, managers struggle to make timely adjustments when disruptions occur, whether due to supplier delays, transportation bottlenecks, or sudden demand spikes. Decision-making becomes a slow, manual process, often requiring multiple approvals and cross-departmental coordination before actions are taken. This lag in response time can be costly, particularly in industries with short product lifecycles or perishable goods.

4.3.2 AI-Enabled Supply Chain: Real-Time Insights and Predictive Analytics

AI transforms supply chain decision-making by providing real-time, data-driven insights that enhance accuracy and agility by 20-30% (Aljohani et al., 2023). Unlike traditional methods, AI-powered systems continuously analyze live data streams from IoT sensors, ERP systems, market trends, and external databases to generate actionable intelligence (Adenekan, 2025). Predictive analytics models process this information to forecast demand fluctuations, supplier risks, and logistical challenges before they impact operation. For instance, AI-driven demand sensing tools incorporate not just historical sales data but also external variables such as weather patterns, social media trends, and economic indicators. Retailers using these systems can adjust inventory levels dynamically, reducing excess stock while preventing shortages. Similarly, AI-powered supply chain control towers provide end-to-end visibility, allowing

managers to monitor shipments, warehouse operations, and supplier performance in real time (Masengu et al., 2023). If a delay occurs, AI can instantly recommend alternative suppliers or reroute shipments to minimize disruptions.

Machine learning algorithms also enhance strategic decision-making by simulating multiple scenarios (Wang, 2024). Businesses can test different procurement strategies, production schedules, or distribution models to identify the most cost-effective and resilient approaches. For example, an AI system might analyze the trade-offs between faster shipping (higher costs) versus bulk shipments (lower costs but longer lead times) to optimize fulfillment strategies based on customer expectations.

The shift from reactive to predictive and prescriptive analytics enables supply chains to operate with unprecedented efficiency. By replacing guesswork with data-driven intelligence, AI empowers businesses to make smarter, faster, and more profitable decisions, ultimately driving competitive advantage in an increasingly complex global marketplace.

4.4. Supply Chain Visibility and Risk Mitigation

4.4.1 Traditional Supply Chains: Limited Visibility and Reactive Risk Management

Traditional supply chains operate with fragmented visibility, relying on manual tracking methods and disconnected data systems that fail to provide real-time insights into operations (Adewale and Ahsan, 2025). Shipment statuses, inventory levels, and supplier performance are often recorded in spreadsheets or legacy ERP systems, requiring time-consuming manual updates. This lack of real-time data creates blind spots, making it difficult to track goods in transit, monitor warehouse conditions, or identify potential delays before they escalate.

When disruptions occur, whether due to geopolitical instability, natural disasters, or supplier failures, traditional supply chains struggle to respond effectively (Kanike, 2023). Risk management is largely reactive, with contingency plans based on historical incidents rather than predictive intelligence. For example, if a critical supplier faces production delays, companies may not realize the impact until orders are already late, forcing last-minute adjustments that increase costs and strain customer relationships. Without end-to-end transparency, businesses also face challenges in quality control, as defective or counterfeit products may enter the supply chain undetected until they reach the end consumer.

4.4.2 AI-Enabled Supply Chains: Real-Time Tracking and Proactive Risk Mitigation

AI revolutionizes supply chain visibility by integrating IoT sensors, GPS tracking, and blockchain technology to create a transparent, real-time monitoring ecosystem (Aditya et al., 2023). IoT-enabled devices attached to shipments provide continuous updates on location, temperature, humidity, and handling conditions, critical for industries like pharmaceuticals and food where environmental factors affect product integrity. AI algorithms process this data to detect anomalies (e.g., unexpected delays or temperature deviations) and trigger immediate alerts for corrective action.

Predictive analytics take risk management a step further by identifying vulnerabilities before they cause disruptions. AI models analyze diverse data sources, weather forecasts, port congestion reports, supplier financial health, and even social media trends, to predict potential bottlenecks (Oyewole et al., 2024). For instance, an AI system might flag a supplier in a region experiencing political unrest, prompting the procurement team to diversify sources preemptively.

Blockchain further enhances transparency by creating an immutable ledger of transactions, ensuring traceability from raw materials to end delivery (Nwariaku et al, 2024). This is particularly valuable in combating counterfeiting and ensuring compliance with sustainability or regulatory standards. For example, Walmart uses blockchain to trace the origin of food products within seconds, a process that previously took days.

By combining real-time tracking with predictive risk models, AI-enabled supply chains reduce disruptions up to 40% and improve on-time deliveries by 25% (Mohsen, 2023). This proactive approach not only minimizes costs but also builds resilience, a critical advantage in today's volatile global trade environment.

4.5. Customer Experience and Service Delivery

4.5.1 Traditional Supply Chains: Limited Personalization and Inefficient Service

Traditional supply chain models struggle to meet modern customer expectations due to their inherent limitations in personalization and responsiveness (Wang, 2022). Customer interactions are often generic, with standardized service protocols that fail to account for individual preferences or purchase histories. Order fulfillment processes typically involve multiple manual touchpoints, from order entry to shipment tracking, creating delays and frustrating customer experiences. For example, a customer inquiring about delivery status might need to wait hours (or even days) for a

response as employees manually check disparate systems.

Additionally, traditional supply chains lack the agility to adapt to last-minute changes, such as address modifications or delivery time adjustments (Mate, 2022). Returns processing is particularly cumbersome, often requiring lengthy approval procedures and physical paperwork. These inefficiencies lead to dissatisfied customers, increased churn rates, and damage to brand reputation. Studies show that consumers abandon purchases due to poor delivery options, are unlikely to return after a negative delivery experience, highlighting the critical need for improved service delivery (Xu and Huang, 2024).

4.6. AI-Driven Transformation of Customer Experience and Service Delivery

AI is revolutionizing customer experience by delivering hyper-personalized interactions and seamless service. Advanced machine learning algorithms process customer data, including purchase history, browsing behavior, and preferences to generate tailored recommendations that drive engagement (Patil, 2024). Amazon's recommendation system, responsible for 35% of its sales, exemplifies the power of AI-driven personalization in boosting revenue and customer satisfaction (Manasa and Devi, 2022).

The impact extends across the entire fulfillment process. AI-powered chatbots provide instant, 24/7 support for order tracking and returns, slashing response times from hours to seconds (Uzoka et al., 2024). Dynamic routing algorithms analyze real-time traffic, weather, and carrier data to optimize deliveries, achieving accuracy for same-day and next-day shipments (Oloko, 2024). Automated returns systems leverage computer vision to verify products and process refunds instantly, reducing return processing times by 80%.

Proactive service is another key advantage. Predictive analytics anticipate potential delays before they occur, automatically notifying customers with alternative solutions like pickup points or rescheduled deliveries (Oloko, 2024). Retail leaders like Zara use AI to align inventory with local demand patterns, cutting delivery times by 30-40% (Digitaldefynd, 2025). Businesses adopting AI report 20-35% higher customer satisfaction scores and 15-25% increases in repeat purchases (Umutoni, 2025). In today's competitive landscape, where 73% of consumers expect personalized service, AI-powered supply chains have become essential for building loyalty and maintaining market relevance.

5 Challenges and Barriers to AI Adoption in Supply Chains

5.1. Financial and Infrastructure Barriers to AI Adoption

The implementation of AI in supply chains faces significant financial hurdles, with high initial costs being a primary obstacle for many organizations. Establishing AI capabilities requires substantial investments in specialized hardware, software platforms, and cloud computing infrastructure (van der Vlist et al., 2024). For small and medium enterprises, these capital expenditures often prove prohibitive, creating a technological divide between industry leaders and smaller players.

Beyond the core technology expenses, companies must address critical infrastructure challenges (Rudolf, 2023). Many organizations operate with outdated legacy systems that lack the data integration capabilities needed for effective AI deployment (Rudolf, 2023). Upgrading these systems to enable real-time data processing and analytics represents another major cost consideration. Additionally, implementing robust cybersecurity measures to protect AI-driven supply chain operations adds further financial burdens.

While AI promises long-term efficiency gains and cost reductions, the substantial upfront investment creates hesitation among decision-makers (Alhosani and Alhashmi, 2024). Industry surveys reveal that 60% of supply chain professionals view implementation costs as the most significant adoption barrier (Akinbamini et al., 2024). Companies can approach this challenge through phased rollouts, beginning with targeted pilot programs in specific operational areas before expanding AI integration. Cloud-based AI solutions and subscription models offer more accessible entry points, though financial constraints remain a key obstacle to widespread adoption across the supply chain sector.

5.2. Data Privacy and Integration Issues

Beyond financial constraints, organizations face significant challenges related to data privacy risks and system integration when implementing AI in supply chain operations (Shrivastav, 2022). As AI-driven solutions rely heavily on vast amounts of data, including sensitive supplier information, customer details, and transaction records, companies must navigate complex cybersecurity and compliance requirements. Breaches in AI systems could expose proprietary logistics data or violate regulations like GDPR, potentially resulting in legal penalties and reputational damage. Many

businesses remain hesitant to adopt AI due to these security vulnerabilities, particularly in industries handling confidential data, such as healthcare or defense logistics (Adewale et al., 2025).

Another major hurdle is the integration of AI with legacy supply chain systems (Shrivastav, 2022). Most enterprises still operate on decades-old ERP and inventory management platforms that were not designed for AI compatibility. These outdated systems often store data in siloed formats, making it difficult to feed clean, structured information into AI algorithms. For example, a manufacturer attempting to implement predictive maintenance AI might struggle to connect it with aging production line monitoring tools that use proprietary data protocols. This incompatibility forces companies to undertake expensive middleware development or complete system overhauls, processes that can take years and disrupt ongoing operations.

Even when integration is technically possible, data quality issues frequently emerge. (Robertson et al., 2025) Inconsistent record-keeping practices across global supply networks lead to missing values, duplicate entries, and formatting discrepancies that corrupt AI training datasets. Research indicates that data scientists spend up to 80% of their time cleaning and preparing data rather than developing models, significantly delaying AI implementation timelines (Pragmatic Institute, 2025).

To overcome these barriers, companies must invest in unified data architectures and gradually modernize legacy infrastructure. Emerging solutions like blockchain-based data sharing frameworks and API-driven integration platforms show promise in bridging the gap between old systems and new AI capabilities while maintaining security standards (Bhumichai et al., 2024). However, until these technologies mature, data privacy concerns and system incompatibilities will continue slowing AI adoption across global supply chains.

5.3. Workforce Adaptation and Skills Gap

The successful integration of AI into supply chain operations faces significant human capital challenges that extend beyond technological and financial considerations. A critical barrier emerges from the substantial skills gap in most organizations, where existing employees often lack the technical expertise required to work with AI systems (Rudolf, 2023). Supply chain professionals traditionally trained in conventional logistics methods now need competencies in data analytics, machine learning interpretation, and AI system management. This skills mismatch creates operational bottlenecks, as companies struggle to find or develop talent capable of bridging traditional supply chain knowledge with emerging technologies.

Compounding this challenge is the substantial need for workforce retraining. Implementing AI solutions requires comprehensive upskilling programs to help employees transition from manual, routine tasks to more analytical roles that oversee and optimize AI-driven processes (Babu et al., 2024). For instance, warehouse staff accustomed to physical inventory counts must learn to manage and troubleshoot autonomous mobile robots and AI-powered inventory systems. However, developing these training programs demands significant time and resource investments that many organizations, particularly small and medium enterprises, find prohibitive.

Perhaps more fundamentally, organizational resistance to change presents a persistent obstacle. Many employees view AI adoption as a threat to job security rather than an opportunity for career development (Kim and Kim, 2024). This resistance manifests in various forms, from passive non-compliance with new systems to active opposition against automation initiatives. In unionized environments, this can lead to formal disputes and work stoppages. The human factor often proves more challenging to address than the technological aspects of implementation, as it requires changing long-established workplace cultures and mindsets.

5.4. Ethical and Regulatory Concerns

The adoption of AI in supply chain management introduces complex ethical dilemmas and regulatory compliance challenges that organizations must navigate carefully. One of the primary ethical concerns revolves around algorithmic bias in AI decision-making (Hanna et al., 2024). Machine learning models trained on historical data may inadvertently perpetuate existing biases, such as favoring certain suppliers or regions over others due to embedded patterns in past procurement decisions. For example, an AI system might deprioritize suppliers from developing nations if historical data reflects traditional biases toward established vendors. Such outcomes could lead to unfair exclusion and reputational damage, requiring continuous auditing of AI models for fairness and transparency.

Another critical issue is accountability in autonomous decision-making. When AI systems automate procurement, inventory allocation, or logistics routing, it becomes challenging to assign responsibility for errors or suboptimal outcomes (Goswami et al., 2024). Unlike human-led processes where decisions can be traced back to individuals, AI-

driven choices emerge from complex algorithms that even developers may struggle to interpret fully. This 'black box' problem raises legal and ethical questions, particularly in scenarios where AI-driven decisions result in financial losses, supply disruptions, or safety incidents.

On the regulatory front, companies face mounting compliance pressures related to data privacy and cross-border data flows. AI systems in global supply chains process vast amounts of sensitive data, including supplier contracts, customer information, and shipment details, which must comply with varying regional regulations such as the EU's General Data Protection Regulation (GDPR) or California's Consumer Privacy Act (CCPA) (Sartor, 2020). Non-compliance can result in hefty fines and legal consequences. Additionally, industries like pharmaceuticals and food face stringent traceability requirements, where AI-driven decisions must align with safety and quality standards enforced by bodies like the FDA or EMA.

The lack of standardized global frameworks for AI ethics in supply chains further complicates adoption (Abhulimen & Ejike, 2024). While some countries have introduced guidelines for responsible AI use, inconsistent regulations across markets force multinational companies to navigate a patchwork of requirements. For instance, an AI system optimizing shipments across Europe, Asia, and North America must comply with each region's distinct rules on data localization, algorithmic transparency, and automated decision-making.

To address these concerns, businesses must implement ethical AI governance frameworks, including bias mitigation protocols, explainability standards, and compliance monitoring systems. Collaborating with regulators and industry groups to shape balanced policies will be crucial for fostering trust in AI-driven supply chains while ensuring innovation aligns with societal values. Without proactive management of these ethical and regulatory challenges, organizations risk legal penalties, loss of stakeholder trust, and inhibited AI adoption across global operations.

6 Summary of Findings

The comparative analysis between traditional and AI-enabled supply chain processes reveals transformative improvements across all operational dimensions. AI-driven systems demonstrate superior performance in operational efficiency, reducing costs by up to 30% through automation and predictive maintenance, while traditional methods remain hampered by manual inefficiencies. In decision-making, AI's real-time analytics and forecasting capabilities outperform reactive, historical-data-dependent approaches, improving demand prediction accuracy by 20-30%. Supply chain visibility is significantly enhanced through IoT and blockchain integration, enabling proactive risk management, a stark contrast to traditional systems' opaque, disruption-prone operations, also revolutionizes inventory management. Finally, in customer experience, AI enables hyper-personalization and faster fulfillment, boosting satisfaction rates by 20-35%, whereas traditional models struggle with generic service and slow response times.

However, the analysis also identifies barriers to AI adoption, including high implementation costs, data privacy risks, workforce resistance, and regulatory ambiguities. These challenges underscore the need for strategic planning to realize AI's full potential.

Recommendations

- To successfully adopt AI in supply chains while overcoming implementation challenges, organizations should follow a strategic approach.
- Begin with small-scale pilot projects in critical areas like demand forecasting to demonstrate value before expanding.
- Modernize data infrastructure by transitioning to cloud platforms and implementing robust data governance for optimal AI performance.
- Invest in comprehensive workforce training programs to equip employees with necessary AI skills while emphasizing AI's complementary role.
- Develop ethical AI frameworks with regular audits to ensure fairness and regulatory compliance.

Finally, collaborate with government bodies and industry groups to establish balanced policies that foster innovation while addressing privacy and security concerns. This multi-pronged strategy enables companies to maximize AI benefits while managing risks effectively.

6.1. Future Direction

Future research should explore key AI applications in supply chains. Generative AI could revolutionize supplier negotiations and contract analysis. Autonomous networks may enable self-regulating logistics systems. Sustainability-focused studies should examine AI's role in circular supply chains and emissions reduction. Cross-industry comparisons between retail and manufacturing could reveal transferable AI implementation strategies. These areas offer rich potential for advancing supply chain innovation.

7 Conclusion

This study set out to examine how AI transforms supply chain operations by comparing traditional methods with AI-enabled approaches across key operational areas. Our research objectives focused on evaluating performance differences in efficiency, decision-making, visibility, inventory management, and customer experience, while identifying adoption challenges and proposing implementation strategies.

The comparative analysis revealed several critical insights. AI-driven supply chains consistently outperform traditional methods, delivering 20-30% improvements in demand forecasting accuracy, 30-50% reductions in inventory costs, and 25-40% fewer supply chain disruptions. The most significant advantages emerged in real-time decision-making capabilities and end-to-end visibility, where AI's data-processing power enables proactive rather than reactive management. However, the research also identified substantial adoption barriers including high implementation costs, data integration complexities, workforce skill gaps, and evolving regulatory landscapes.

Looking ahead, AI's role in supply chain management will only grow more pronounced. The technology is evolving from being an efficiency tool to becoming the central nervous system of global supply networks. Future advancements in generative AI and autonomous systems promise to further revolutionize areas like supplier negotiations, dynamic pricing, and self-healing logistics networks. However, realizing this potential requires addressing current challenges through strategic investments in data infrastructure, workforce development, and ethical frameworks.

As supply chains face increasing complexity from globalization, sustainability pressures, and market volatility, AI adoption transitions from competitive advantage to operational necessity. Organizations that successfully navigate the implementation challenges will gain significant resilience and responsiveness. The next decade will likely see AI move from automating discrete tasks to orchestrating entire supply ecosystems, fundamentally redefining how goods flow through global networks. This transformation demands continued research, particularly in developing standardized implementation roadmaps and measuring AI's impact on supply chain sustainability metrics. Ultimately, the future of supply chain management belongs to organizations that can harness AI's potential while maintaining human oversight and ethical governance.

Compliance with ethical standards

Disclosure of Conflict of interest

No conflict of interest/ Competing Interests in the publication of the manuscript or with any institution or product that is mentioned in the manuscript and/or is important to the outcome of the study presented.

Statement of informed consent

The study did not involve information about any individual. Hence, no informed consent was obtained.

References

- [1] Abhulimen, A. O. & Ejike, O. G. Ethical considerations in AI use for SMEs and supply chains: Current challenges and future directions, International Journal of Applied Research in Social Sciences, Volume 6, P.No. 1653-1679. DOI: 10.51594/ijarss.v6i8.1391
- [2] Abhulimen, Angela & Ejike, Onyinye. (2024). Solving supply chain management issues with AI and Big Data analytics for future operational efficiency. Computer Science & IT Research Journal. 5. 1780-1805. DOI: 10.51594/csitrj.v5i8.1396.
- [3] Adenekan, Tobiloba. (2025). Integrating IoT, AI, and ERP Systems: A Holistic Approach to Smart Manufacturing and Supply Chain Optimization.

- [4] Adewale, Tunmise & Ahsan, K M Abrar. (2025). Real-Time Supply Chain Visibility: Leveraging AI for End- to-End Transparency.
- [5] Adewale, Tunmise & michael, & mighty, stylvester & stevester, david. (2025). The Ethical and Security Challenges of AI Adoption in Logistics.
- [6] Aditya, Kumar & Chakraborty, Subhadeep & Dahire, Akash & Kumari, Anmol & Milanova, Mariofanna. (2024). Integrating Blockchain, IoT, and AI in Supply Chain Management. 10.1007/979-8-8688-0315-4_9.
- [7] Agrawal, N., Sharma, M., Raut, R.D. et al. Supply Chain Flexibility and Post-pandemic Resilience. *Glob J Flex Syst Manag* 24 (Suppl 1), 119–138 (2023). <https://doi.org/10.1007/s40171-024-00375-2>
- [8] Akinbamini, E., Vargas, A., Traill, A., Boza, A., & Cuenca, L. (2025). Critical Analysis of Technologies Enhancing Supply Chain Collaboration in the Food Industry: A Nigerian Survey. *Logistics*, 9(1), 8. <https://doi.org/10.3390/logistics9010008>
- [9] Alhosani, K., Alhashmi, S.M. Opportunities, challenges, and benefits of AI innovation in government services: a review. *Discov Artif Intell* 4, 18 (2024). <https://doi.org/10.1007/s44163-024-00111-w>
- [10] Ali, Ashraf & Mustafa, Khan. (2025). The Role of AI and Blockchain Technology in Strengthening Fraud Prevention Strategies in Finance. 10.13140/RG.2.2.11202.29126.
- [11] Aljohani, A. Predictive Analytics and Machine Learning for Real-Time Supply Chain Risk Mitigation and Agility. *Sustainability* 2023, 15, 15088. <https://doi.org/10.3390/su152015088>
- [12] Amin, Rubel & Kaur, Gagandeep. (2024). A Study of Supply Chain Management Strategies and Challenges Through Systematic Literature Review. 10.4018/979-8-3693-1602-3.ch007.
- [13] Babu, Nirupama & Marda, Keshav & Mishra, Abhishek & Bhattachar, Saahil & Ahluwalia, Anshika & Services, Edupub. (2024). The Impact of Artificial Intelligence in the Workplace and its Effect on the Digital Wellbeing of Employees. *Journal for Studies in Management and Planning*, 10. 1-32. 10.5281/zenodo.10936348.
- [14] Baldwin JR, Pingault JB, Schoeler T, Sallis HM, Munafò MR. Protecting against researcher bias in secondary data analysis: challenges and potential solutions. *Eur J Epidemiol*. 2022 Jan;37(1):1-10. doi: 10.1007/s10654-021-00839-0. Epub 2022 Jan 13. PMID: 35025022; PMCID: PMC8791887.
- [15] Bhumichai, D., Smiliotopoulos, C., Benton, R., Kambourakis, G., & Damopoulos, D. (2024). The Convergence of Artificial Intelligence and Blockchain: The State of Play and the Road Ahead. *Information*, 15(5), 268. <https://doi.org/10.3390/info15050268>
- [16] Čolaković, Andrijana & Đorđević, Andjela & Cvetić, Biljana & Danilović, Milos & Vasiljević, Dragan. (2023). Traditional vs Digital Supply Chains. 335-342. 10.31410/ITEMA.2023.335.
- [17] Culot, G., Podrecca, M., Nassimbeni, G. Artificial intelligence in supply chain management: A systematic literature review of empirical studies and research directions, *Computers in Industry*, Volume 162. Available at: <https://doi.org/10.1016/j.compind.2024.104132>.
- [18] Digitadedynd (2024).5 Ways Zara is Using AI (Case Study) <https://digitaldefynd.com/IQ/ways-zara-using-ai/#:~:text=With%20predictive%20modeling%20and%20AI,reputation%20for%20reliability%20and%20spe> ed.
- [19] Douaioui, K., Ouchekh, R., Benmoussa, O., & Mabrouki, C. (2024). Machine Learning and Deep Learning Models for Demand Forecasting in Supply Chain Management: A Critical Review. *Applied System Innovation*, 7(5), 93. <https://doi.org/10.3390/asi7050093>
- [20] Goswami, Shankha & Mondal, Surajit & Sarkar, Shouvik & Gupta, Krishna & Sahoo, Sushil Kumar & Halder, Rohit. (2024). Artificial Intelligence Enabled Supply Chain Management: Unlocking New Opportunities and Challenges. *Artificial Intelligence and Applications*. 10.47852/AIA42021814.
- [21] Hanna, G., Pantanowitz, L., Jackson, b. et al. (2025). Ethical and Bias Considerations in Artificial Intelligence/Machine Learning, *Modern Pathology*, Volume 38, Issue 3, <https://doi.org/10.1016/j.modpat.2024.100686>.
- [22] Huamin WU, Guo LI, Dmitry IVANOV. The transformative power of generative AI for supply chain management: Theoretical framework and agenda. *Front. Eng*, <https://doi.org/10.1007/s42524-025-4240-x>
- [23] Ismaeil M, Lalla A. The role and impact of artificial intelligence on supply chain management: efficiency, challenges, and strategic implementation. *J Ecohumanism*. 2024;3:89-106. doi:10.62754/joe.v3i4.3461.

- [24] Kanike, Uday. (2023). Factors disrupting supply chain management in manufacturing industries. 4. 10.18757/jscms.2023.6986.
- [25] Kim, B. and Kim, M. (2024). How artificial intelligence-induced job insecurity shapes knowledge dynamics: the mitigating role of artificial intelligence self-efficacy. *Journal of Innovation & Knowledge*, Volume 9, Issue 4. <https://doi.org/10.1016/j.jik.2024.100590>.
- [26] Lechler, Sabrina & Canzaniello, Angelo & Roßmann, Bernhard & von der Gracht, Heiko & Hartmann, Evi. (2019). Real-time data processing in supply chain management: revealing the uncertainty dilemma. *International Journal of Physical Distribution & Logistics Management*. ahead-of-print. 10.1108/IJPDLM-12-2017-0398.
- [27] Manasa, R & devi, Jayanthila. (2022). Amazon's Artificial Intelligence in Retail Novelty - Case Study. *International Journal of Case Studies in Business, IT, and Education*. 787-804. 10.47992/IJCSBE.2581.6942.0233.
- [28] Masengu, Reason & Salah El Din, Mohamed & Bentley, Yongmei. (2023). The Role of Supply Chain Control Towers in Facilitating Sustainable Supply Chain Management Practices. 10.4018/979-8-3693-0019-0.ch016.
- [29] Mate, Nilesh. (2022). Transformation of supply chain management to agile supply chain management: Creating competitive advantage for the organizations. *World Journal of Advanced Research and Reviews*. 15. 575-592. 10.30574/wjarr.2022.15.2.0872.
- [30] Mohammed, Irshadullah Asim & Sofia, R & Radhakrishnan, G & Jha, Sarvagya & Said, Nidal. (2025). The Role of Artificial Intelligence in Enhancing Business Efficiency and Supply Chain Management. *Journal of Information Systems Engineering & Management*. 10. 10. 10.52783/jisem.v10i10s.1413.
- [31] Mohammed, Irshadullah Asim & Sofia, R & Radhakrishnan, G & Jha, Sarvagya & Said, Nidal. (2025). The Role of Artificial Intelligence in Enhancing Business Efficiency and Supply Chain Management. *Journal of Information Systems Engineering & Management*. 10. 10. 10.52783/jisem.v10i10s.1413.
- [32] Mohsen B. Impact of Artificial Intelligence on Supply Chain Management Performance. *J Serv Sci Manag*. 2023;16:44-58. doi: 10.4236/jssm.2023.161004.
- [33] Mufutau, G. O, Mojisola, O. V. (2013). The Roles Of Supply Chain Management In A Deregulation Economy, *The International Journal Of Engineering And Science (IJES)* . <https://www.theijes.com/papers/v2-i11/Part.3/F021103031043.pdf>
- [34] Mufutau, G.O, Mojisola, O. V. (). The Roles Of Supply Chain Management In A Deregulation Economy.
- [35] Oloko O. (2024) Dynamic Route Optimization in Last-Mile Delivery Using Predictive Analytics: A Case
- [36] ONOTOLE, ERUMUSELE & OGUNYANKINNU, TUNDE & Aipoh, Godwin & OSUNKANMIBI, AKINTUNDE & Egbemhenghe, Joseph. (2025). Artificial Intelligence in Logistics and Distribution: The function of AI in dynamic route planning for transportation, including self-driving trucks and drone delivery systems. *World Journal of Advanced Research and Reviews*. 25. 155-167. 10.30574/wjarr.2025.25.2.0214.
- [37] Oyewole, Adedoyin & Okoye, Chinwe & Ejairu, Emuesiri. (2024). Reviewing predictive analytics in supply chain management: Applications and benefits. *World Journal of Advanced Research and Reviews*. 568-574. 6. 10.30574/wjarr.2024.21.3.0673.
- [38] Patil, Dimple. (2024). Artificial intelligence-driven customer service: Enhancing personalization, loyalty, and customer satisfaction.
- [39] Pragmatic Institute (2025). Overcoming the 80/20 Rule in Data Science. <https://www.pragmaticinstitute.com/resources/articles/data/overcoming-the-80-20-rule-in-data-science/#:~:text=Data%20practitioners%20spend%2080%25%20of,known%20as%20the%20Pareto%20principle>.
- [40] Robertson, J., Botha, E., Oosthuizen, K. et al. (2025). Managing change when integrating artificial intelligence (AI) into the retail value chain: The AI implementation compass, *Journal of Business Research*, Volume 189, <https://doi.org/10.1016/j.jbusres.2025.115198>.
- [41] Rudolf, Grünbichler. (2023). Implementation Barriers of artificial intelligence in companies. 10.22598/odyssey/2023.5.
- [42] Sartor, G. (2024) The impact of General Data Protection Regulation (GDPR) on artificial intelligence. [https://www.europarl.europa.eu/RegData/etudes/STUD/2020/641530/EPRS_STU\(2020\)641530_EN.pdf](https://www.europarl.europa.eu/RegData/etudes/STUD/2020/641530/EPRS_STU(2020)641530_EN.pdf)

- [43] Shrivastav M. Barriers Related to AI Implementation in Supply Chain Management. *J Glob Inf Manag.* 2022;30:1-19. doi: 10.4018/JGIM.296725.
- [44] Slam M, Monjur M, Akon T. Supply Chain Management and Logistics: How Important Interconnection Is for Business Success. *Open J Bus Manag.* 2023;11:2505-24. doi: 10.4236/ojbm.2023.115139.
- [45] Snyder H. Literature review as a research methodology: An overview and guidelines. *J Bus Res.* 2019;104:333-9. doi: 10.1016/j.jbusres.2019.07.039.
- [46] Ugbebor F, Adeteye M, Ugbebor J. Automated Inventory Management Systems with IoT Integration to Optimize Stock Levels and Reduce Carrying Costs for SMEs: A Comprehensive Review. *J Artif Intell Gen Sci.* 2024;6:306-40. doi: 10.60087/jaigs.v6i1.257.
- [47] Umutoni A. The Influence of Artificial Intelligence on Customer Service Automation in E-Commerce in Rwanda. *Int J Technol Syst.* 2025;10:57-68. doi: 10.47604/ijts.3213.
- [48] Uzoka A, Cadet E, Ojukwu P. Leveraging AI-Powered chatbots to enhance customer service efficiency and future opportunities in automated support. *Comput Sci IT Res J.* 2024;5(10):2485-510. Available from: https://www.researchgate.net/publication/385230161_Leveraging_AI-Powered_chatbots_to_enhance_customer_service_efficiency_and_future_opportunities_in_automated_support
- [49] van der Vlist F, Helmond A, Ferrari F. Big AI: Cloud infrastructure dependence and the industrialisation of artificial intelligence. *Big Data Soc.* 2024;11(1). doi: 10.1177/20539517241232630.
- [50] Venigandla K, Venkata M, Tatikonda. Building Resilient Supply Chains: The Role of AI and RPA in Predictive Management and Automation. 2023;6:421-9.
- [51] Vidrová Z. Supply chain management in the aspect of globalization. *SHS Web Conf.* 2020;74:04031. doi: 10.1051/shsconf/20207404031.
- [52] Wang W. Artificial Intelligence in Strategic Business Decisions: Enhancing Market Competitiveness. *Adv Econ Manag Polit Sci.* 2024;117:87-93. doi: 10.54254/2754-1169/117/20241987.
- [53] Wang Y. Supply Chain Management and Customer Relationship Management. In: Sarkis J, editor. *The Palgrave Handbook of Supply Chain Management.* Cham: Palgrave Macmillan; 2022. doi: 10.1007/978-3-030-89822-9_60-1.
- [54] Wynn S. The Financial Impact of Manual Inventory Record Errors [dissertation]. Lynchburg (VA): Liberty University, School of Business; 2021. Available from: <https://digitalcommons.liberty.edu/cgi/viewcontent.cgi?article=4267&context=doctoral>
- [55] Xia J, Li H, He Z. The Effect of Blockchain Technology on Supply Chain Collaboration: A Case Study of Lenovo. *Systems.* 2023;11(6):299. doi: 10.3390/systems11060299.
- [56] Xu Y, Huang JS. Factors Influencing Cart Abandonment in the Online Shopping Process. *Soc Behav Personal.* 2015;43:1617-27. doi: 10.2224/sbp.2015.43.10.1617.