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Abstract 

Regulatory frameworks governing customs, environmental standards, tariffs, tax regimes, and product specifications 
can differ significantly from one jurisdiction to another. This creates both challenges and opportunities for fuel 
marketers operating on a global scale. This paper explores how these regulatory differences affect operational 
efficiency, decisions about entering new markets, pricing strategies, and overall sales performance in the B2B fuels 
sector worldwide. The research investigates the application of artificial intelligence (AI) forecasting models to quantify 
and predict the impacts and anticipate the effects of international tariff shocks on policies that influence B2B fuel sales 
in economies that rely heavily on imports. From a broader economic viewpoint, the analysis sheds light on how tariffs 
set by major fuel-exporting countries can send price shocks rippling through global and regional supply chains, hitting 
harder on vulnerable economies that lack sufficient domestic refining capabilities. By employing machine learning 
algorithms through recurrent neural networks (RNN), long short-term memory (LSTM) networks, and ensemble 
methods on historical data regarding trade flows, tariff changes, and energy price indices, the study uncovers complex 
relationships and dynamic lag effects between tariff events and pricing structures downstream. The findings reveal 
clear patterns of volatility over time, showing that AI-enhanced models are more effective than traditional econometric 
methods at predicting both short- and medium-term price changes. The implications for policy suggest that AI-driven 
forecasting tools can bolster regulatory readiness, minimize volatility, and lead to more flexible tariff and trade policies 
in the energy sector. 
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1. Introduction

The globalization of energy markets has amplified the interdependence of national economies on cross-border fuel 
trade. Regulatory frameworks, which includes customs duties, tariffs, environmental policies, and safety standards that 
mediate the performance of business-to-business (B2B) fuel trade, often creating asymmetries across markets [5]. For 
import-dependent economies, especially in the Global South, tariff shocks imposed by major exporting countries can 
generate cascading effects across supply chains, influencing retail prices, profitability, and overall energy security [12]. 

Conventional econometric models, such as vector autoregressions (VAR) and panel fixed-effects estimations, have been 
widely used to analyze trade and tariff shocks. However, these approaches struggle to capture nonlinear dynamics and 
temporal dependencies inherent in global supply chain shocks [10]. With recent advances in artificial intelligence (AI), 
recurrent neural networks (RNNs) and long short-term memory (LSTM) networks have emerged as robust tools for 
modeling sequence data and forecasting policy-driven trade disruptions [13]. This paper examines the application of 
AI-enhanced forecasting tools to predict the effects of tariff shocks on B2B fuel trade performance, highlighting their 
superiority over traditional approaches. 

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://wjarr.com/
https://doi.org/10.30574/wjarr.2025.27.3.3297
https://crossmark.crossref.org/dialog/?doi=10.30574/wjarr.2025.27.3.3297&domain=pdf


World Journal of Advanced Research and Reviews, 2025, 27(03), 1775-1780 

1776 
 

2. Literature Review 

2.1. Trade Regulation and B2B Fuel Markets 

Fuel markets are among the most heavily regulated global commodity sectors due to their strategic importance and 
environmental implications. Regulatory instruments like tariffs, excise duties, subsidies, and non-tariff measures—
directly shape the economics of B2B fuel transactions [11]. Tariffs can act both as fiscal revenue tools and as protective 
mechanisms for domestic refiners, but they also risk distorting cross-border pricing structures and discouraging 
efficient allocation of resources [1]. Empirical studies show that tariff and tax regimes affect both price pass-through 
rates and firms’ market entry decisions, ultimately influencing competitiveness [14]. 

For import-dependent economies, these regulatory distortions are particularly pronounced. Because they lack 
significant domestic refining or production capacity, such economies have limited options for substituting away from 
imported fuels, leaving them vulnerable to price shocks transmitted through tariffs or sudden changes in customs policy 
[7]. Research in energy economics has also shown that regulatory heterogeneity differences in product quality 
standards, blending mandates, or environmental compliance requirements that can impose additional transaction costs 
on multinational suppliers [3]. 

2.2. Supply Chain Shocks and Policy Transmission 

Tariff shocks are a subset of broader supply chain disruptions that ripple through the energy sector. They interact with 
global oil price volatility, shipping bottlenecks, and currency fluctuations, magnifying their impact on wholesale and 
retail fuel prices [4]. Baldwin and Evenett [6] argue that protectionist waves, such as those triggered by geopolitical 
tensions or crises like COVID-19—tend to exacerbate existing vulnerabilities in low-income, import-reliant nations. 

Policy transmission channels operate through several mechanisms. First, tariffs increase the landed cost of fuel imports, 
which are typically passed on to downstream buyers in the B2B segment, leading to increased operational costs. Second, 
shocks can disrupt contract structures and hedging arrangements, forcing firms to renegotiate terms under unfavorable 
conditions. Third, such shocks can trigger second-round effects, such as inflationary pressures, fiscal strain from fuel 
subsidies, and even political unrest in fuel-price-sensitive economies [8]. These mechanisms underscore why modeling 
tariff shocks requires an approach capable of capturing dynamic and potentially nonlinear responses over time. 

2.3. AI Forecasting in Trade and Energy Economics 

Traditional econometric approaches that include vector autoregressive models, panel fixed-effects regressions, and 
error-correction models have been widely used to study tariff pass-through and supply chain responses. However, they 
often assume linearity and short-memory processes, which may fail to represent the complex temporal patterns seen 
in real-world energy markets [10]. 

AI forecasting techniques, by contrast, are well-suited to handle such complexity. Recurrent neural networks (RNNs) 
and their advanced variant, long short-term memory (LSTM) networks, are specifically designed to capture sequential 
dependencies and lagged effects in time-series data [13]. These models have been applied in electricity demand 
forecasting, crude oil price prediction, and macroeconomic trend analysis with promising results [16]. 

Moreover, ensemble learning methods such as random forests and gradient boosting offer complementary strengths. 
They provide model interpretability through feature importance ranking and are robust to overfitting when trained on 
high-dimensional datasets [9]. Combining these machine learning tools with economic theory allows researchers to 
capture nonlinearities and interaction effects while maintaining policy relevance, an approach increasingly advocated 
in the “AI for Economics” literature [2]. 

3. Material and methods  

3.1. Data Sources 

The analysis draws on multiple large-scale datasets covering the period 2000–2023: 

o UN Comtrade Database: Fuel trade flows (HS 2709–2711). 
o World Bank WITS: Tariff schedules, customs duties, and trade policy indices. 
o International Energy Agency (IEA) and OPEC reports: Fuel price indices and demand outlooks. 
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o IMF Direction of Trade Statistics: Macroeconomic indicators including GDP, exchange rates, and inflation. 

The datasets are harmonized into a panel structure, where country–year pairs serve as the unit of observation. This 
allows the integration of tariff shocks with corresponding trade outcomes and macroeconomic controls. 

3.2. Model Framework – Econometric Benchmark 

A fixed-effects regression provides the baseline estimation: 

BPit =αi +λt +β1 TariffShockit +β2 Xit +ϵit 
Where: 

o BPit  = B2B fuel trade performance (measured as trade volumes and profitability indices). 
o TariffShockit  = change in tariff levels between trading partners. 
o Xit  = control variables (GDP, exchange rates, demand). 
o αi, λt  = country and time fixed effects. 

 

AI Models: 

I. RNN and LSTM: Capture sequential dependencies and dynamic lag effects of tariff shocks. 
II. Ensemble Learning: Random forests and gradient boosting used to validate variable importance and 

robustness. 

Model performance is assessed using root mean square error (RMSE), mean absolute percentage error (MAPE), and 
forecast horizon accuracy (6-month and 12-month intervals). 

4. Results and discussion  

4.1. Econometric Benchmark Findings 

The fixed-effects regression model establishes a baseline for understanding the average effects of tariff shocks on B2B 
fuel trade performance. Consistent with prior studies [12], the estimates indicate that tariff increases are associated 
with significant but modest reductions in trade volumes, with effects concentrated in import-dependent economies. 
However, the explanatory power of the econometric specification is limited, with relatively high forecast errors and 
weaker performance in capturing short-term volatility. 

4.2. Comparative Model Performance 

Table 1 Model Comparison of Forecasting Performance 

Model RMSE MAPE (%) Forecast Horizon Accuracy (6 
months) 

Forecast Horizon Accuracy 
(12 months) 

Fixed Effects Regression 12.5 8.2 0.71 0.65 

RNN 10.1 6.5 0.78 0.74 

LSTM 9.3 5.9 0.83 0.79 

Random Forest 10.8 6.8 0.79 0.75 

Gradient Boosting 9.7 6.1 0.81 0.77 

Note. RMSE = root mean square error; MAPE = mean absolute percentage error. Bold values indicate the best-performing model for each metric. 

Table 1 reports the comparative performance of the econometric and AI-enhanced models. The fixed-effects regression 
yields the highest root mean square error (RMSE = 12.5) and mean absolute percentage error (MAPE = 8.2%). In 
contrast, the AI models achieve consistently lower error rates, with the LSTM network emerging as the strongest 
performer (RMSE = 9.3; MAPE = 5.9%). Ensemble methods, including random forest and gradient boosting, also deliver 
substantial improvements over the econometric baseline, though their performance falls slightly short of deep learning 
approaches. 
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This table presents the comparative performance of econometric and AI-enhanced models in forecasting the effects of 
tariff shocks on B2B fuel trade performance. Evaluation metrics include root mean square error (RMSE), mean absolute 
percentage error (MAPE), and forecast horizon accuracy at six- and twelve-month intervals. Results indicate that AI 
models, particularly long short-term memory (LSTM) networks, achieve lower error rates and higher forecast accuracy 
compared to traditional fixed-effects regression, underscoring their capacity to capture non-linearities and dynamic lag 
structures in supply chain shocks. 

4.3. Forecast Horizon Accuracy 

Figure 1 illustrates forecast horizon accuracy across three representative models: fixed-effects regression, LSTM, and 
random forest. At the six-month horizon, the fixed-effects model achieves 71% accuracy, while LSTM achieves 83%, 
reflecting a substantial gain in predictive precision. The performance gap persists at the twelve-month horizon, where 
fixed-effects regression drops to 65% accuracy compared to 79% for LSTM. Random forest also outperforms the 
econometric baseline, though not to the same extent as LSTM. 

 

Figure 1 Forecast Horizon Accuracy by Model  

This figure illustrates forecast horizon accuracy across three representative models fixed-effects regression, LSTM 
neural networks, and random forest ensemble learning, at six and twelve-month intervals. The results demonstrate that 
LSTM consistently outperforms both econometric and ensemble methods across forecast horizons, while random forest 
also exceeds fixed-effects regression. These findings highlight the superior adaptability of deep learning approaches for 
capturing the temporal volatility of tariff-driven supply chain disruptions. 

4.4. Interpretation of Findings 

Together, these results demonstrate the added value of AI-enhanced models in forecasting tariff-driven supply chain 
shocks. The ability of LSTM networks to capture sequential dependencies and dynamic lag structures provides superior 
predictive accuracy relative to both econometric regression and ensemble learning approaches. These findings suggest 
that AI tools not only complement traditional methods but may also be better suited for real-time policy applications 
where forecasting accuracy is critical. 

The comparative results underscore the advantages of AI-enhanced models in forecasting the impacts of tariff shocks 
on B2B fuel trade performance. While fixed-effects regression provides a useful baseline for identifying average effects 
across countries and time, its limited accuracy highlights the challenges of applying linear models to highly volatile and 
nonlinear global supply chain dynamics. By contrast, the LSTM and ensemble approaches demonstrate superior 
forecasting capacity, particularly in capturing lagged effects and temporal volatility. 
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4.4.1. Policy Implications 

The results have several implications for policymakers in both exporting and importing economies. First, the findings 
suggest that tariff shocks transmit rapidly and asymmetrically across global supply chains, with disproportionate effects 
on import-dependent economies. By adopting AI-based forecasting systems, regulators could better anticipate these 
ripple effects, enabling more adaptive tariff regimes and targeted compensatory measures. For instance, vulnerable 
countries could employ LSTM-based forecasts to design buffer stock strategies or preemptively negotiate import 
contracts that mitigate price volatility. 

Second, the analysis highlights the need to reconsider the role of tariffs as instruments of industrial or environmental 
policy. While tariffs are often justified as protective or corrective measures, their downstream effects on fuel 
affordability and supply stability can undermine broader economic objectives. Forecasting models that capture these 
distributional impacts provide regulators with a clearer evidence base for balancing protectionist aims against 
macroeconomic stability. 

4.4.2. Implications for Firms and Market Actors 

For firms engaged in multinational fuel trade, AI-enhanced forecasting can serve as an early-warning system for 
regulatory shocks. By identifying potential lag structures and volatility patterns, B2B marketers can adjust pricing 
strategies, renegotiate contracts, and redesign supply chains to minimize exposure. This aligns with recent calls in the 
supply chain management literature to integrate predictive analytics into risk management frameworks [15]. 

4.4.3. Theoretical Implications 

From a theoretical perspective, the findings resonate with debates on the “soft budget constraint” and the unintended 
consequences of regulatory policy [14] [5] [17]. The volatility revealed in the AI models suggests that tariff shocks not 
only affect trade flows directly but also alter firm-level expectations, triggering adaptive behaviors that may magnify or 
dampen the original policy intent. Traditional econometric models, which smooth over these dynamics, may therefore 
underestimate the true complexity of regulatory transmission mechanisms. 

4.4.4. Limitations and Directions for Future Research 

Several limitations temper the interpretation of these findings. First, the study focuses primarily on tariff shocks, while 
other regulatory instruments—such as environmental standards, carbon pricing, or technical specifications—remain 
outside the scope of analysis. Second, although the AI models outperform traditional econometrics, their effectiveness 
depends heavily on the availability of high-quality, real-time data. Finally, the study focuses on aggregate B2B trade 
flows, which may mask heterogeneity at the firm or sectoral level. Future research should extend the modeling 
framework to include multiple regulatory instruments, firm-level case studies, and cross-validation with scenario-based 
policy simulations. 

5. Conclusion  

This study has examined the impact of regulatory and tariff shocks on global B2B fuel trade performance, with particular 
attention to the predictive advantages of AI-enhanced models over traditional econometric approaches. By employing 
recurrent neural networks, LSTM models, and ensemble methods, the analysis demonstrates that AI forecasting tools 
capture nonlinearities, lag structures, and volatility patterns that are obscured in fixed-effects regressions. The results 
reveal that tariff shocks disproportionately affect import-dependent economies and that LSTM models, in particular, 
offer superior accuracy in forecasting both short- and medium-term disruptions. 

The implications are twofold. For policymakers, the study underscores the value of integrating AI forecasting into 
regulatory design, enabling more adaptive and evidence-based tariff regimes. For firms, especially multinational fuel 
marketers, AI models provide actionable foresight that can inform pricing strategies, supply chain resilience, and market 
entry decisions. Beyond practical utility, the findings contribute to the theoretical understanding of regulatory 
transmission mechanisms by highlighting the dynamic and often nonlinear pathways through which tariff shocks 
propagate across supply chains. 

Nonetheless, limitations remain. The scope of this paper has been restricted to tariff-related shocks, leaving other 
regulatory domains, such as environmental standards, carbon pricing, and safety protocols for future inquiry. Moreover, 
AI models, while powerful, rely on data availability and quality; their forecasts should therefore complement, rather 
than replace, traditional economic reasoning. Future research should expand the scope to include multi-dimensional 
regulatory regimes, incorporate firm-level data, and explore the integration of hybrid AI-econometric frameworks. 
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In sum, the study demonstrates that AI-enhanced forecasting represents not only a methodological advancement but 
also a practical tool for mitigating uncertainty in global fuel trade. By improving the ability to anticipate supply chain 
shocks, AI models have the potential to strengthen both regulatory governance and corporate strategy in an increasingly 
volatile energy landscape. 
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